Publications by authors named "Krishnendu Chattopadhyay"

Salinity and flooding are two major production impediments affecting rice cultivation in coastal agro-ecosystems. We investigated how rice plants use two contrasting strategies such as energy conservation (for submergence tolerance) and energy expenditure (for ion exclusion) to adapt to the combined stresses of saline water submergence (SWS). Pot and hydroponic experiments were conducted using four selected rice genotypes carrying Sub1 (Submergence1) and/or Saltol (Salinity tolerance) QTLs in their genetic background and exposed them to salinity and submergence stresses individually and combined under controlled experimental conditions.

View Article and Find Full Text PDF

Abiotic stresses are a major constraint for agricultural productivity and food security in today's era of climate change. Plants can experience different types of abiotic stresses, either individually or in combination. Sometimes, more than one stress event may occur simultaneously or one after another during the lifecycle of the plant.

View Article and Find Full Text PDF

The first high-protein rice variety of India, CR Dhan 310, developed at ICAR-NRRI, Cuttack is being selected for the study. It contains 10.1% protein in milled rice as compared to 6-7% protein content in the milled rice of any other normal variety.

View Article and Find Full Text PDF

Unlabelled: Assessing genetic variability of micronutrient content in association with qualitative and quantitative traits in germplasm is prerequisite for effective biofortification programme. Odisha, a state of eastern India is considered as one of the most potential hot spot of diversity of cultivated rice for grain yield and nutritional traits. Significant variability for most of the qualitative and quantitative traits including Fe and Zn content was observed in a set of 293 germplasm with varying kernel colour encompassing 14 districts of Odisha.

View Article and Find Full Text PDF

Unlabelled: In lowland rice ecosystems stagnant flooding or partial submergence has a significant negative impact on important yield attributing traits resulting in substantial grain yield reduction. Genetics of this stress is not yet studied intensively. Rashpanjor (IC 575321), a landrace from India, was identified and used as the tolerant donor for stagnant flooding and was crossed with high yielding variety Swarna to develop the RIL population for the present investigation.

View Article and Find Full Text PDF

Plant's response to fresh- and saline-water flooding and the resulting partial submergence, seems different due to the added complexities of element toxicity of salinity. We identified a few rice genotypes which can tolerate combined stresses of partial submergence and salinity during saline water flooding. To gain mechanistic insights, we compared two rice genotypes: Varshadhan (freshwater-flooding tolerant) and Rashpanjor (both fresh- and saline-water flooding tolerant).

View Article and Find Full Text PDF

Background And Aims: Submergence tolerance in rice is primarily attributed to the action of the SUB1 gene, but other associated traits such as leaf gas film (LGF) thickness, leaf hydrophobicity, porosity and leaf density have been known to aid submergence tolerance in rice. However, association of these traits with SUB1 quantitative trait locus (QTL) has not been demonstrated. In this study, we aim to investigate (1) whether the presence of the SUB1 QTL in the genetic background has any influence on the thickness of the LGF and (ii) whether its removal has any impact on stress perception and submergence tolerance in Sub1 and non-Sub1 rice.

View Article and Find Full Text PDF

A panel of 60 genotypes comprising New Plant Types (NPTs) along with indica, tropical and temperate japonica genotypes was phenotypically evaluated for four seasons in irrigated situation for grain yield per se and component traits. Twenty NPT genotypes were found promising with an average grain yield varying from 5.45 to 8.

View Article and Find Full Text PDF

Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice.

View Article and Find Full Text PDF

Chlorophyll a fluorescence (ChlF) parameters measured with fluorescence imaging techniques were used to investigate the combined effect of salt and partial submergence stress to understand photosynthetic performance in rice (Oryza sativa L.). ChlF parameters such as maximal fluorescence (Fm), variable fluorescence (Fv=Fm -F0), the maximal photochemical efficiency of PSII (Fv/Fm) and the quantum yield of nonregulated energy dissipation of PSII (Y(NO)) were able to distinguish genotypes precisely based on their sensitivity to stress.

View Article and Find Full Text PDF

In the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects.

View Article and Find Full Text PDF

Background: Phytic acid (PA) is an anti-nutrient present in cereals and pulses. It is known to reduce mineral bioavailability and inhibit starch-digesting α-amylase (which requires calcium for activity) in the human gut. In principle, the greater the amount of PA, the lower is the rate of starch hydrolysis.

View Article and Find Full Text PDF

Lack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identification of robust QTLs for grain protein content (GPC) in rice. In the present investigation a  BCF mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identified QTLs, one for GPC (qGPC1.

View Article and Find Full Text PDF

The present study reports an unequivocal and improved protocol for efficient screening of salt tolerance at flowering stage in rice, which can aid phenotyping of population for subsequent identification of QTLs associated with salinity stress, particularly at reproductive stage. To validate the new method, the selection criteria, level and time of imposition of stress; plant growth medium were standardized using three rice genotypes. The setup was established with a piezometer placed in a perforated pot for continuous monitoring of soil EC and pH throughout the period of study.

View Article and Find Full Text PDF

With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB.

View Article and Find Full Text PDF