Sci Technol Adv Mater
June 2025
Materials with magnetic anisotropy can serve as a model object for exploring the multicaloric effect because their thermodynamic state alterations can be achieved either through the application of a magnetic field or/and by mechanically rotating the sample in the magnetic field using torque . In such materials, the total entropy change arises from two distinct contributions: (1) the conventional magnetocaloric effect (MCE) or paraprocess and (2) the rotational MCE . In this manuscript, using molecular field model which enables a separation of contributions to the total entropy change from conventional and rotational , we have determined cross-coupling multicaloric coefficients and for anisotropic magnetic materials and show that they satisfy the basic thermodynamic identities.
View Article and Find Full Text PDFThe non-equilibrium microstructure characterized by Tb supersaturation within Fe-Ga single-crystals is deduced to induce a substantial enhancement in magnetostriction. However, the growth of the non-equilibrium single-crystal remains a formidable obstacle, as existing methods can only produce either non-equilibrium polycrystal or near-equilibrium single-crystal, leading to the stagnation in magnetostriction. Herein, a rapid-directional-solidification (RDS) strategy is devised to grow non-equilibrium single-crystals.
View Article and Find Full Text PDFUnraveling the mechanism behind bulk perpendicular magnetic anisotropy (PMA) in amorphous rare earth-transition metal films has proven challenging. This is largely due to the inherent complexity of the amorphous structure and the entangled potential origins arising from microstructure and atomic structure factors. Here, we present an approach wherein the magneto-electric effect is harnessed to induce 90° switching of bulk PMA in Tb-Co films to in-plane directions by applying voltages of only -1.
View Article and Find Full Text PDFWe present a novel instrument designed for advanced magnetic study, installed at the ID12 beamline of the European Synchrotron Radiation Facility in Grenoble, France. This instrument offers the unique capability to simultaneously measure element-specific microscopic and macroscopic properties related to the magnetic, electronic and structural characteristics of materials. In addition to X-ray absorption, X-ray magnetic circular dichroism alongside X-ray diffraction patterns, the macroscopic magnetization, volume changes, caloric properties and electrical resistivity of magnetic materials could be measured strictly under the same experimental conditions as a function of both magnetic field (up to ±7 T) and temperature (ranging from 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Among the magnetocaloric materials featuring first-order phase transitions (FOPT), FeRh is considered as a reference system to study the FOPT because it is a "simple" binary system with a CsCl structure exhibiting a large adiabatic temperature change. Recently, ab initio theory predicted that changes in the Fe/Rh stoichiometry in the vicinity of equiatomic composition strongly influence the FOPT characteristics. However, this theoretical prediction was not clearly verified experimentally.
View Article and Find Full Text PDFThe demand for strong, compact permanent magnets essential for the energy transition drives innovation in magnet manufacturing. Additive manufacturing, particularly Powder Bed Fusion of metals using a laser beam (PBF-LB/M), offers potential for near-net-shaped Nd-Fe-B permanent magnets but often falls short compared to conventional methods. A less explored strategy to enhance these magnets is feedstock modification with nanoparticles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Currently, magnetocaloric refrigeration technologies are emerging as ecofriendly and more energy-efficient alternatives to conventional expansion-compression systems. However, major challenges remain. A particular concern is the mechanical properties of magnetocaloric materials, namely, their fatigue under cycling and difficulty in processing and shaping.
View Article and Find Full Text PDFThe production of bulk nanostructured silicide thermoelectric materials by a reversible hydrogen absorption-desorption process is demonstrated. Here, high-pressure reactive milling under 100 bar hydrogen is used to decompose the CaSi phase into CaH and Si. Subsequent vacuum heat treatment results in hydrogen desorption and recombination of the constituents into the original phase.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Zero thermal expansion (ZTE) composites are typically designed by combining positive thermal expansion (PTE) with negative thermal expansion (NTE) materials acting as compensators and have many diverse applications, including in high-precision instrumentation and biomedical devices. La(Fe,Si)13-based compounds display several remarkable properties, such as giant magnetocaloric effect and very large NTE at room temperature. Both are linked via strong magnetovolume coupling, which leads to sharp magnetic and volume changes occurring simultaneously across first-order phase transitions; the abrupt nature of these changes makes them unsuitable as thermal expansion compensators.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Utilizing the molecular beam epitaxy technique, a nanoscale thin-film magnet of -axis-oriented SmCo and SmCo phases is stabilized. While typically in the prototype Sm(Co, Fe, Cu, Zr) pinning-type magnets, an ordered nanocomposite is formed by complex thermal treatments, here, a one-step approach to induce controlled phase separation in a binary Sm-Co system is shown. A detailed analysis of the extended X-ray absorption fine structure confirmed the coexistence of SmCo and SmCo phases with 65% SmCo and 35% SmCo.
View Article and Find Full Text PDFPinning-type magnets with high coercivity at high temperatures are at the core of thriving clean-energy technologies. Among these, Sm Co -based magnets are excellent candidates owing to their high-temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20-30% of the theoretical limits.
View Article and Find Full Text PDFDue to economic, environmental and geopolitical issues, the development of permanent magnets with a composition free of rare earth elements and with acceptable magnetic properties has been considered a priority by the international community, being MnAl based alloys amongst the most promising candidates. The aim of this work was to evaluate the toxicity of powders of two forms of newly developed MnAl(C) permanent magnets through exposure experiments applying three model organisms, using as a benchmark powders of a commercial rare-earth-containing magnet (NdFeB). For this purpose, the direct exposure to the different particles suspensions as well as to magnets leachates was evaluated.
View Article and Find Full Text PDFOwing to electric-field screening, the modification of magnetic properties in ferromagnetic metals by applying small voltages is restricted to a few atomic layers at the surface of metals. Bulk metallic systems usually do not exhibit any magneto-electric effect. Here, we report that the magnetic properties of micron-scale ferromagnetic metals can be modulated substantially through electrochemically-controlled insertion and extraction of hydrogen atoms in metal structure.
View Article and Find Full Text PDFEnergy Technol (Weinh)
July 2020
Magnetic refrigeration is an upcoming technology that could be an alternative to the more than 100-year-old conventional gas-vapor compression cooling. Magnetic refrigeration might answer some of the global challenges linked with the increasing demands for readily available cooling in almost every region of the world and the global-warming potential of conventional refrigerants. Important issues to be solved are, for example, the required mass and the ecological footprint of the rare-earth permanent magnets and the magnetocaloric material, which are key parts of the magnetic cooling device.
View Article and Find Full Text PDFThe giant magnetocaloric effect, in which large thermal changes are induced in a material on the application of a magnetic field, can be used for refrigeration applications, such as the cooling of systems from a small to a relatively large scale. However, commercial uptake is limited. We propose an approach to magnetic cooling that rejects the conventional idea that the hysteresis inherent in magnetostructural phase-change materials must be minimized to maximize the reversible magnetocaloric effect.
View Article and Find Full Text PDFThe ideal magnetocaloric material would lay at the borderline of a first-order and a second-order phase transition. Hence, it is crucial to unambiguously determine the order of phase transitions for both applied magnetocaloric research as well as the characterization of other phase change materials. Although Ehrenfest provided a conceptually simple definition of the order of a phase transition, the known techniques for its determination based on magnetic measurements either provide erroneous results for specific cases or require extensive data analysis that depends on subjective appreciations of qualitative features of the data.
View Article and Find Full Text PDFMagnetic cooling could be a radically different energy solution substituting conventional vapour compression refrigeration in the future. For the largest cooling effects of most potential refrigerants we need to fully exploit the different degrees of freedom such as magnetism and crystal structure. We report now for Heusler-type Ni–Mn–In–(Co) magnetic shape-memory alloys, the adiabatic temperature change ΔT(ad) = −3.
View Article and Find Full Text PDF