A high renal oxygen (O ) need is primarily associated with the renal tubular O consumption (VO ) necessary for a high rate of sodium (Na ) transport. Limited O availability leads to increased levels of adenosine, which regulates the kidney via activation of both A and A adenosine receptors (A1R and A2AR, respectively). The relative contributions of A1R and A2AR to the regulation of renal Na transport and VO have not been determined.
View Article and Find Full Text PDFEnlargement of kidney tubules is a common feature of multiple cystic kidney diseases in humans and mice. However, while some of these pathologies are characterized by cyst expansion and organ enlargement, in others, progressive interstitial fibrosis and kidney atrophy prevail. The Kif3a knockout mouse is an established non-orthologous mouse model of cystic kidney disease.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
May 2016
Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2015
Hedgehog (Hh) is an evolutionary conserved signaling pathway that has important functions in kidney morphogenesis and adult organ maintenance. Recent work has shown that Hh signaling is reactivated in the kidney after injury and is an important mediator of progressive fibrosis. Pericytes and fibroblasts have been proposed to be the principal cells that respond to Hh ligands, and pharmacological attenuation of Hh signaling has been considered as a possible treatment for fibrosis, but the effect of Hh inhibition on tubular epithelial cells after kidney injury has not been reported.
View Article and Find Full Text PDFKidney fibrosis is marked by an epithelial-to-mesenchymal transition (EMT) of tubular epithelial cells (TECs). Here we find that, during renal fibrosis, TECs acquire a partial EMT program during which they remain associated with their basement membrane and express markers of both epithelial and mesenchymal cells. The functional consequence of the EMT program during fibrotic injury is an arrest in the G2 phase of the cell cycle and lower expression of several solute and solvent transporters in TECs.
View Article and Find Full Text PDFJ Cell Physiol
December 2015
The high requirement of O2 in the renal proximal tubule stems from a high rate of Na(+) transport. Adenosine A1 receptor (A1R) activation regulates Na(+) transport in this nephron segment. Thus, the effect of the acute activation and the mechanisms of A1R on the rate of O2 consumption were evaluated.
View Article and Find Full Text PDFBackground: The Drosophila INterspersed Elements-1 (DINE-1/INE1) transposable elements (TEs) are the most abundant component of the Drosophila melanogaster genome and have been associated with functional gene duplications. DINE-1 TEs do not encode any proteins (non-autonomous) thus are moved by autonomous partners. The identity of the autonomous partners has been a mystery.
View Article and Find Full Text PDFNephronophthisis (NPHP) is one of the most common genetic causes of CKD; however, the underlying genetic abnormalities have been established in <50% of patients. We performed genome-wide analysis followed by targeted resequencing in a Turkish consanguineous multiplex family and identified a canonic splice site mutation in ANKS6 associated with an NPHP-like phenotype. Furthermore, we identified four additional ANKS6 variants in a cohort of 56 unrelated patients diagnosed with CKD due to nephronophthisis, chronic GN, interstitial nephritis, or unknown etiology.
View Article and Find Full Text PDFEpithelial Na(+)/H(+) exchanger-3 (NHE3) transport is fundamental for renal and intestinal sodium reabsorption. Cytoplasmic protons are thought to serve as allosteric modifiers of the exchanger and to trigger its transport through protein conformational change. This effect presupposes an intracellular pH (pHi) dependence of NHE3 activity, although the biophysical and molecular basis of NHE3 pHi sensitivity have not been defined.
View Article and Find Full Text PDFJ Am Soc Nephrol
February 2013
Renal microangiopathies and membranoproliferative GN (MPGN) can manifest similar clinical presentations and histology, suggesting the possibility of a common underlying mechanism in some cases. Here, we performed homozygosity mapping and whole exome sequencing in a Turkish consanguineous family and identified DGKE gene variants as the cause of a membranoproliferative-like glomerular microangiopathy. Furthermore, we identified two additional DGKE variants in a cohort of 142 unrelated patients diagnosed with membranoproliferative GN.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
July 2012
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals.
View Article and Find Full Text PDF