Int J Biol Markers
June 2025
BackgroundKin17 is critical in regulating the proliferation and metastasis of tumors in various malignancies. However, the relationship between Kin17 expression, clinicopathologic features, and esophageal squamous cell carcinoma (ESCC) prognosis remains unclear.MethodsThe analysis of Kin17 messenger RNA (mRNA) expression involved the utilization of data from The Cancer Genome Atlas (TCGA) dataset through the platforms the University of ALabama at Birmingham CANcer data analysis portal (UALCAN) and the Gene Expression Omnibus (GEO).
View Article and Find Full Text PDFA common life-threatening hereditary disease, Cystic Fibrosis (CF), affects primarily Caucasian infants. High sweat-salt levels are observed as a result of a single autosomal mutation in chromosome 7 that affects the critical function of the cystic fibrosis transmembrane regulator (CFTR). For establishing tailored treatment strategies, it is important to understand the broad range of CFTR mutations and their impacts on disease pathophysiology.
View Article and Find Full Text PDFThe limited response of hepatocellular carcinoma (HCC) to chemotherapy drugs has always been a bottleneck in therapy. DNA damage repair is a major reason for chemoresistance. Previous studies have confirmed that KIN17 affects chemosensitivity.
View Article and Find Full Text PDFNAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. β-Lapachone (β-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between β-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown.
View Article and Find Full Text PDFCancer Genomics Proteomics
March 2024
Cancers (Basel)
December 2023
Lung and breast cancers rank as two of the most common and lethal tumors, accounting for a substantial number of cancer-related deaths worldwide. While the past two decades have witnessed promising progress in tumor therapy, developing targeted tumor therapies continues to pose a significant challenge. NAD(P)H quinone oxidoreductase 1 (NQO1), a two-electron reductase, has been reported as a promising therapeutic target across various solid tumors.
View Article and Find Full Text PDFGlypican-3 (GPC3) is a heparan sulfate proteoglycan (HSPG) that binds to the cell membrane glycosylphosphatidylinositol (GPI), widely expressed in human embryos, and is undetectable in healthy adult liver but overexpressed in human hepatocellular carcinoma (HCC). Therefore, accurate and sensitive detection of GPC3 is critical for disease diagnosis. In recent years, a series of methods have been developed for the highly sensitive detection of GPC3, but there is a lack of reviews on recent advances in GPC3-related assays.
View Article and Find Full Text PDFPancreatic cancer is among the top five leading causes of cancer-related deaths worldwide, with poor overall survival rates. Current therapies for pancreatic cancer lack tumor specificity, resulting in harmful effects on normal tissues. Therefore, developing tumor-specific agents for the treatment of pancreatic cancer is critical.
View Article and Find Full Text PDFImmunotherapy is a promising therapeutic tool that promotes the elimination of cancerous cells by a patient's own immune system. However, in the clinical setting, the number of cancer patients benefitting from immunotherapy is limited. Identification and targeting of other immune subsets, such as tumor-associated macrophages, and alternative immune checkpoints, like Mer, may further limit tumor progression and therapy resistance.
View Article and Find Full Text PDFLow oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer.
View Article and Find Full Text PDFBiomed Opt Express
December 2022
Multiple myeloma (MM) is a type of blood cancer where plasma cells abnormally multiply and crowd out regular blood cells in the bones. Automated analysis of bone marrow smear examination is considered promising to improve the performance and reduce the labor cost in MM diagnosis. To address the drawbacks in established methods, which mainly aim at identifying monoclonal plasma cells (monoclonal PCs) via binary classification, in this work, considering that monoclonal PCs is not the only basis in MM diagnosis, for the first we construct a multi-object detection model for MM diagnosis.
View Article and Find Full Text PDFKIN17 DNA and RNA binding protein (Kin17) is involved in the regulation of tumorigenesis of diverse human cancers. However, its role in the cancer progression and metastasis in hepatocellular carcinoma (HCC) remains largely unknown. Bioinformatics and immunohistochemistry staining were used to investigate the expression pattern of KIN17 and its prognostic value in HCC patients.
View Article and Find Full Text PDFAltered DNA methylation in the form of 5-methylcytosine (5-mC) patterns is correlated with disease diagnosis, prognosis, and treatment response. Therefore, accurate analysis of 5-mC is of great significance for the diagnosis of diseases. Here, an efficient enhanced photoelectrochemical (PEC) biosensor was designed for the quantitative analysis of DNA 5-mC based on a cascaded energy level aligned co-sensitization strategy coupling with the bridged DNA nanoprobe (BDN).
View Article and Find Full Text PDFNeutrophils, the most copious leukocytes in human blood, play a critical role in tumorigenesis, cancer progression, and immune suppression. Recently, neutrophils have attracted the attention of researchers, immunologists, and oncologists because of their potential role in orchestrating immune evasion in human diseases including cancer, which has led to a hot debate redefining the contribution of neutrophils in tumor progression and immunity. To make this debate fruitful, this review seeks to provide a recent update about the contribution of neutrophils in immune suppression and tumor progression.
View Article and Find Full Text PDFThe glycoprotein alpha-1-antichymotrypsin (AACT), a serine protease inhibitor, is mainly synthesized in the liver and then secreted into the blood and is involved in the acute phase response, inflammation, and proteolysis. The dysregulation of AACT and its glycosylation levels are associated with tumor progression and recurrence, and could be used as a biomarker for tumor monitoring. In this review, we summarized the expression level, glycosylation modification, and biological characteristics of AACT during inflammation, neurodegenerative or other elderly diseases, and tumorigenesis, as well as, focused on the biological roles of AACT in cancer.
View Article and Find Full Text PDFChildren (Basel)
February 2022
Background: Inflammatory myofibroblastic tumor (IMT) is a rare mesenchymal tumor with intermediate malignancy that tends to affect children primarily. To date, no standardized therapies exist for the treatment of IMT. This study aimed to share experience from China Children's Medical Center for the explorative treatment of IMT.
View Article and Find Full Text PDFBackground: Breast cancer (BC), the most common cause of cancer death in women, overtook lung cancer as the leading cause of cancer worldwide in 2020. Although many studies have proposed KIN17 as a biomarker of tumorigenesis in different cancer types, its role in tumor metastasis, particularly in BC metastasis, has been underexplored. This study aimed to explore the role of KIN17 in BC metastasis.
View Article and Find Full Text PDFCardiovasc Res
October 2020
Pulmonary arterial hypertension (PAH) is a disease with complex pathobiology, significant morbidity and mortality, and remains without a cure. It is characterized by vascular remodelling associated with uncontrolled proliferation of pulmonary artery smooth muscle cells, endothelial cell proliferation and dysfunction, and endothelial-to-mesenchymal transition, leading to narrowing of the vascular lumen, increased vascular resistance and pulmonary arterial pressure, which inevitably results in right heart failure and death. There are multiple molecules and signalling pathways that are involved in the vascular remodelling, including non-coding RNAs, i.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is ranked the third deadliest cancer worldwide whose molecular pathogenesis is not fully understood. Although deregulated metabolic pathways have been implicated in HCC onset and progression, the mechanisms triggering this metabolic imbalance are yet to be explored. Here, we identified a gene signature coding catabolic enzymes (Cat-GS) involved in key metabolic pathways like amino acid, lipid, carbohydrate, drug, and retinol metabolism as suppressed in HCC.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is one of the leading cause of cancer associated deaths worldwide. Independent studies have proposed altered DNA methylation pattern and aberrant microRNA (miRNA) levels leading to abnormal expression of different genes as important regulators of disease onset and progression in HCC. Here, using systems biology approaches, we aimed to integrate methylation, miRNA profiling and gene expression data into a regulatory methylation-miRNA-mRNA (meth-miRNA-mRNA) network to better understand the onset and progression of the disease.
View Article and Find Full Text PDFCell Oncol (Dordr)
February 2019
Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated deaths worldwide. Although recent studies have proposed different biomarkers for HCC progression and therapy resistance, a better understanding of the molecular mechanisms underlying HCC progression and recurrence, as well as the identification of molecular markers with a higher diagnostic accuracy, are necessary for the development of more effective clinical management strategies. Here, we aimed to identify novel players in HCC progression.
View Article and Find Full Text PDFHistone deacetylase 1 (HDAC1) plays a crucial role in cancer progression and development. This enzyme has been confirmed to be a key regulator of tumor biology functions, such as tumor cell proliferation, migration and invasion. However, HDAC1 expression in glioma remains controversial, and its specific function and molecular mechanism in glioblastoma is poorly understood.
View Article and Find Full Text PDFBackground And Objective: Cognitive impairments have been reported in patients with hyperprolactinemia; however, there is a lack of knowledge of brain structure alterations relevant to hyperprolactinemia in prolactinomas. Thus, we aimed to identify changes in brain structure in prolactinomas and to determine whether these changes are related to cognitive performance and clinical characteristics.
Methods: Participants were 32 female patients with prolactinomas and 26 healthy controls (HC) matched for age, sex, education, and handedness.
Protein Pept Lett
November 2018
Background: Identification of immunogenic antigens is an important step for the vaccine improvement. Previous studies indicated that Actinobacillus pleuropneumoniae PalA is homologous to a Haemophilus influenzae protective antigen Hi-PAL (P6) protein. However, PalA protein adversely affects the Apx toxinbased subunit vaccine.
View Article and Find Full Text PDFCotton is an important multipurpose crop which is highly sensitive to both biotic and abiotic stresses. Proper management of this cash crop requires systematic understanding of various environmental conditions that are vital to yield and quality. High temperature stress can severely affect the viability of pollens and anther indehiscence, which leads to significant yield losses.
View Article and Find Full Text PDF