Crewed missions to the Moon, Mars, and beyond necessitate advanced health monitoring techniques due to risks such as musculoskeletal degradation, cancer, and kidney issues from prolonged exposure to radiation and microgravity. This paper presents the icrofabricated nsite nalyzer for iomarkers (MOAB), a state-of-the-art device designed for extraterrestrial missions capable of precise biomarker detection. First, the fluid manipulation capabilities of an integrated programmable microfluidic array (PMA) chip are characterized, resulting in high pumping resolution and repeatability, regardless of the microfluidic resistance of the path chosen through the PMA.
View Article and Find Full Text PDFLignin, the most abundant natural aromatic macromolecule, holds significant potential for high-value applications. However, its complex and irregular structure, along with challenges in efficient processing, has limited its widespread use. In this study, we propose an ecofriendly continuous process utilizing deep eutectic solvents (DESs) for lignin depolymerization and subsequent production of lignin nanoparticles.
View Article and Find Full Text PDFInt J Biol Macromol
May 2025
Rapid industrialization and economic growth have intensified the impact of oily contaminants on human health and economic activities. This study developed an sorbent for oil spill remediation in aquatic systems using lignin-derived carbon flakes. Melamine foam, known for its commercial applicability, was used as a polymer matrix, with lignin serving as a binding agent for carbon flake coating.
View Article and Find Full Text PDFAdv Biol (Weinh)
July 2025
Corneal blindness remains a significant global health challenge, with limited treatment options due to donor tissue scarcity outside of the United States and inadequate in vitro models. This review analyzes the current state of cornea chip technology, addressing fundamental challenges and exploring future directions. Recent advancements in biomaterials and fabrication techniques are discussed that aim to recapitulate the complex structure and function of the human cornea, including the multilayered epithelium, organized stroma, and functional endothelium.
View Article and Find Full Text PDFThe exploration of our solar system to characterize the molecular organic inventory will enable the identification of potentially habitable regions and initiate the search for biosignatures of extraterrestrial life. However, it is challenging to perform the required high-resolution, high-sensitivity chemical analyses in space and in planetary environments. To address this challenge, we have developed a microfluidic organic analyzer (MOA) instrument that consists of a multilayer programmable microfluidic analyzer (PMA) for fluidic processing at the microliter scale coupled with a microfabricated glass capillary electrophoresis (CE) wafer for separation and analysis of the sample components.
View Article and Find Full Text PDFNanocellulose, owing to its environmentally friendly and unique attributes, is gaining traction in various industries. However, commercialization of nanocellulose faces challenges due to structural alterations during drying process, leading to irreversible aggregation. This study, inspired by wood's natural structure, introduces a cellulose nanofibril (CNF) drying system using hemicellulose hydrolysate (HH) as a capping agent.
View Article and Find Full Text PDFCurvature is a critical factor in cornea mechanobiology, but its impact on phenotypic alterations and extracellular matrix remodeling of cornea stroma remains unclear. In this work, we investigated how curvature influences the corneal stroma using a hydraulically controlled curvature array chip. The responses of stromal cells to low, medium, and high curvatures were observed by preparing three phenotypes of corneal stromal cells: corneal keratocytes, fibroblasts, and myofibroblasts.
View Article and Find Full Text PDFMost of the chemical and physical interactions of interest to the astrobiology community are influenced by the mineralogy of the systems under consideration. Often, this mineralogy occurs in sediment or sediment-like aqueous microenvironments in which the early minerals differ dramatically from the mature version that results from a long diagenesis, which are tied to complex interactions of pH, redox state, concentration, and temperature. This interconnectedness is difficult to reproduce in a laboratory setting yet is essential to understanding how the physical and chemical demands of living systems alter and are altered by their geological context.
View Article and Find Full Text PDFInt J Biol Macromol
February 2024
In this study, a lignin-based hydrogel for wastewater treatment was prepared by incorporating kraft lignin (KL) into a poly (vinyl alcohol) (PVA) matrix. The underwater structural stability of the KL-PVA hydrogel was guaranteed through physicochemical crosslinking, involving freeze-thaw process and chemical crosslinking reaction. The KL-PVA hydrogel displayed superior compressive characteristics compared to the original PVA hydrogel.
View Article and Find Full Text PDFInt J Biol Macromol
December 2023
Acetylated lignin (AL) can improve compatibility with commercial plastic polymers compared to existing lignin and can be used as an effective additive for eco-friendly biocomposites. For this reason, AL can be effectively incorporated into polylactic acid (PLA)-based biocomposites, but its biodegradation properties have not been investigated. In this study, biodegradation experiments were performed under mesophilic and thermophilic conditions to determine the effect of AL addition on the biodegradation characteristics of PLA-based biocomposites.
View Article and Find Full Text PDFCarbohydr Polym
October 2023
In this study, a pH-sensitive smart hydrogel was successfully prepared by combining a polyelectrolyte complex using biopolymeric nanofibrils. By adding a green citric acid cross-linking agent to the formed chitin and cellulose-derived nanofibrillar polyelectrolytic complex, a hydrogel with excellent structural stability could be prepared even in a water environment, and all processes were conducted in an aqueous system. The prepared biopolymeric nanofibrillar hydrogel not only enables rapid conversion of swelling degree and surface charge according to pH but can also effectively remove ionic contaminants.
View Article and Find Full Text PDFThe development and utilization of biodegradable plastics is an effective way to overcome environmental pollution caused by the disposal of non-degradable plastics. Recently, polybutylene succinate co-butylene adipate co-ethylene succinate co-ethylene adipate, (PBEAS) a biodegradable polymer with excellent strength and elongation, was developed to replace conventional nylon-based non-degradable fishing nets. The biodegradable fishing gear developed in this way can greatly contribute to inhibiting ghost fishing that may occur at the fishing site.
View Article and Find Full Text PDFA programmable microfluidic organic analyzer was developed for detecting life signatures beyond Earth and clinical monitoring of astronaut health. Extensive environmental tests, including various gravitational environments, are required to confirm the functionality of this analyzer and advance its overall Technology Readiness Level. This work examines how the programmable microfluidic analyzer performed under simulated Lunar, Martian, zero, and hypergravity conditions during a parabolic flight.
View Article and Find Full Text PDFInt J Biol Macromol
June 2023
In this study, a chemically modified lignin additive was successfully prepared to improve the physicochemical properties of biodegradable polycaprolactone (PCL)-based nanofibers. The molecular weight and surface functional group characteristics of lignin were effectively controlled through a solvent fractionation process using ethanol. Then, PCL-g-lignin was successfully synthesized by using ethanol-fractionated lignin as a platform for the PCL grafting process.
View Article and Find Full Text PDFMethodsX
September 2022
We describe our reliable methodology for fabricating a complex programmable microvalve array (PMA) and its integration with a glass microcapillary electrophoresis chip. This methodology is applicable to any device that requires multilayered PDMS, multiple alignment processes, selective PDMS bonding, and multilayered integration with downstream sensing systems. Along with the detailed step-by-step process, we discuss essential quality assurance checks that can be performed throughout fabrication to assist in troubleshooting and maximizing chip yield.
View Article and Find Full Text PDFTo improve the versatility and robustness of microfluidic analytical devices for space exploration, a programmable microfluidic array (PMA) has been implemented to support a variety of missions. When designing a PMA, normally closed valves are advantageous to avoid cross contamination and leaking. However, a stable fabrication method is required to prevent these valves from sticking and bonding over time.
View Article and Find Full Text PDFCarbohydr Polym
April 2022
Although nanocellulose is an eco-friendly, high-performance raw material provided by nature, the agglomeration of nanocellulose that occurs during the drying process is the biggest obstacle to its advanced materialization and commercialization. In this study, a facile and simple nanocellulose drying system was designed using lignin, which is self-assembled together with cellulose in natural wood, as an eco-friendly additive. The addition of lignin not only minimized aggregation during the drying and dehydration process of nanocellulose but also ensured excellent redispersion kinetics and stability.
View Article and Find Full Text PDFThree infectious clones of radish mosaic virus (RaMV) were generated from isolates collected in mainland Korea (RaMV-Gg) and Jeju Island (RaMV-Aa and RaMV-Bb). These isolates differed in sequences and pathogenicity. Examination of the wild-type isolates and reassortants between the genomic RNA1 and RNA2 of these three isolates revealed that severe symptoms were associated with RNA1 of isolates Aa or Gg causing systemic necrosis in , or with RNA1 of isolate Bb for induction of veinal necrosis and severe mosaic symptoms in radish.
View Article and Find Full Text PDFAdv Healthc Mater
June 2022
Gallium (Ga)-based liquid metal materials have emerged as a promising material platform for soft bioelectronics. Unfortunately, Ga has limited biostability and electrochemical performance under physiological conditions, which can hinder the implementation of its use in bioelectronic devices. Here, an effective conductive polymer deposition strategy on the liquid metal surface to improve the biostability and electrochemical performance of Ga-based liquid metals for use under physiological conditions is demonstrated.
View Article and Find Full Text PDFCarbohydr Polym
February 2022
Because nanocellulose has a large specific surface area and abundant hydroxyl functional groups due to its unique nanomorphology, interest increases as an eco-friendly water treatment material. However, the distinctive properties of nanocellulose, which exists in a dispersion state, strongly hamper its usage in practical water treatment processes. Additionally, nanocellulose shows low performance in removing anionic pollutants because of its anionic characteristics.
View Article and Find Full Text PDFJ Hazard Mater
March 2022
Applications of nanocellulose as a water treatment material are being actively pursued based on its interesting properties, such as renewability, large specific surface area, hydrophilic surface chemistry, and biodegradability. This study used carboxymethyl cellulose nanofibrils (CMCNFs) to prepare a typical bead-type adsorbent with improved structural stability as an actual water treatment restoration material. In addition, a cationized nanocellulose adsorbent was prepared by introducing polyethyleneimine (PEI) on the surface of the CMCNF (P/CMCNF), the removal efficiency of Cr(VI) was evaluated, and its mechanism was elucidated.
View Article and Find Full Text PDFBiosensors (Basel)
October 2021
Toxic organochloride molecules are widely used in industry for various purposes. With their high volatility, the direct detection of organochlorides in environmental samples is challenging. Here, a new organochloride detection mechanism using 1,5-diazabicyclo[4.
View Article and Find Full Text PDFAn impedimetric biosensor is used to measure electrical impedance changes in the presence of biomolecules from sinusoidal input voltages. In this paper, we present a new portable impedance-based biosensor platform to improve the sensitivity of immunoassays with microparticles as a label. Using a 2 × 4 interdigitated electrode array with a 10/10 μm electrode/gap and a miniaturized impedance analyzer, we performed immunoassays with microparticles by integrating a microfluidic channel to evaluate signal enhancement.
View Article and Find Full Text PDFConventional isotachophoresis (ITP) can be used for pre-concentration of a single analyte, but preconcentration of multiple analytes is time consuming due to handling and washing steps required for the extensive buffer optimization procedure. In this work, we present a programmable microfluidic platform (PMP) to demonstrate fully automated optimization of ITP of multiple analytes. By interfacing a PMP with ITP, buffer selection and repetitive ITP procedures were automated.
View Article and Find Full Text PDF