Soft Matter
December 2022
The artificial biomimetic sensory hair as state-of-art electronics has drawn great attention from academic theorists of industrial production given its potential application in soft robotics, environmental exploration and health monitoring. However, it still remains a challenge to develop highly sensitive electronic sensory hair with fast response. In this study, a bio-inspired electronic whisker (e-whisker) with a hollow polymer shell and a liquid metal core was prepared by microinjection for airflow measurement and detection of obstacles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2022
As as emerging innovation, electronic textiles have shown promising potential in health monitoring, energy harvesting, temperature regulation, and human-computer interactions. To access broader application scenarios, numerous e-textiles have been designed with a superhydrophobic surface to steer clear of interference from humidity or chemical decay. Nevertheless, even the cutting-edge electronic textiles (e-textiles) still have difficulty in realizing superior conductivity and satisfactory water repellency simultaneously.
View Article and Find Full Text PDFHollow microspheres with high specific surface area are widely used in thermal insulation, drug delivery and sustained release, catalysis and optical absorption. Eutectic gallium-indium (EGaIn) undergoes phase transformation and oxidation when heated in aqueous solution, which can provide a crystal seed and preferential growth environment for nanomaterials. Therefore, it is very promising to further study the application of liquid metal in functional and structural nanomaterials.
View Article and Find Full Text PDFMaterials (Basel)
February 2022
This study presents a U-shaped dual-frequency-reconfigurable liquid-metal monopole antenna. Eutectic Gallium-Indium (EGaIn) was used as a conductive fluid and filled in the two branches of the U-shaped glass tube. A precision syringe pump was connected to one of the branches of the U-shaped tube by a silicone tube to drive EGaIn, forming a height difference between the two liquid levels.
View Article and Find Full Text PDFMicromachines (Basel)
December 2021
Room temperature liquid metal (LM) showcases a great promise in the fields of flexible functional thin film due to its favorable characteristics of flexibility, inherent conductivity, and printability. Current fabrication strategies of liquid metal film are substrate structure specific and sustain from unanticipated smearing effects. Herein, this paper reported a facile fabrication of liquid metal composite film via sequentially regulating oxidation to change the adhesion characteristics, targeting the ability of electrical connection and electrothermal conversion.
View Article and Find Full Text PDFHydrochromic visualization of a liquid interface shows vital potential applications in liquid displays, reversible writing, and acidic environmental detection, which offers a platform for detection and forewarning due to its intuitive and visual characteristics. Herein, we report a hydrochromic display due to the interfacial effect of liquid metal (LM)-triggered ammonium metatungstate (AMT) with instant dual-mode color switching. The double-electron-transfer reaction of the AMT on the surface of gallium-based LM caused the formation of heteropoly blue in the presence of acidic surroundings, resulting in a reversible color switching from being colorless to blue or blue to colorless.
View Article and Find Full Text PDFMicromachines (Basel)
June 2021
In this paper, a gravity-triggered liquid metal microstrip patch antenna with reconfigurable frequency is proposed with experimental verification. In this work, the substrate of the antenna is quickly obtained through three-dimensional (3D) printing technology. Non-toxic EGaIn alloy is filled into the resin substrate as a radiation patch, and the NaOH solution is used to remove the oxide film of EGaIn.
View Article and Find Full Text PDFSensors (Basel)
March 2021
This communication provides an integrated process route of smelting gallium-based liquid metal (GBLM) in a high vacuum, and injecting GBLM into the antenna channel in high-pressure protective gas, which avoids the oxidation of GBLM during smelting and filling. Then, a frequency-reconfigurable antenna, utilizing the thermal expansion characteristic of GBLM, is proposed. To drive GBLM into an air-proof space, the thermal expansion characteristics of GBLM are required.
View Article and Find Full Text PDFA one-step strategy for fabricating flexible conductors phase separation is proposed, wherein, the liquid metal was implanted into polydimethylsiloxane, whose viscosity was changed using hexane. Such self-encapsulating composite exhibited good electronic and mechanical stability under mechanical cycles with no significant leaking of droplets during the testing process.
View Article and Find Full Text PDF