Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this paper, a gravity-triggered liquid metal microstrip patch antenna with reconfigurable frequency is proposed with experimental verification. In this work, the substrate of the antenna is quickly obtained through three-dimensional (3D) printing technology. Non-toxic EGaIn alloy is filled into the resin substrate as a radiation patch, and the NaOH solution is used to remove the oxide film of EGaIn. In this configuration, the liquid metal inside the antenna can be flexibly flowed and deformed with different rotation angles due to the gravity to realize different working states. To validate the conception, the reflection coefficients and radiation patterns of the prototyped antenna are then measured, from which it can be observed that the measured results closely follow the simulations. The antenna can obtain a wide operating bandwidth of 3.69-4.95 GHz, which coverage over a range of frequencies suitable for various channels of the 5th generation (5G) mobile networks. The principle of gravitational driving can be applied to the design of reconfigurable antennas for other types of liquid metals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234692 | PMC |
http://dx.doi.org/10.3390/mi12060701 | DOI Listing |