J Mol Biol
September 2025
Transfer RNAs (tRNAs) are subject to various chemical modifications that influence their stability or function. Adenosine to Inosine (A-to-I) editing in the tRNA anticodon at position A34 is an important modification that expands anticodon-codon recognition at the wobble position and is required for normal mRNA translation. The relevance of tRNA editing in cancer remains unexplored.
View Article and Find Full Text PDFThyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that 'sponge' microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions.
View Article and Find Full Text PDFUnlabelled: ADARs catalyze adenosine-to-inosine (A-to-I) editing of double-stranded RNA and regulate global gene expression output through interactions with RNA and other proteins. ADARs play important roles in development and disease, and previous work has shown that ADAR1 is oncogenic in a growing list of cancer types. Here we show that ADAR1 is a critical gene for triple-negative breast cancer cells, as ADAR1 loss results in reduced growth (viability and cell cycle progression), invasion, and mammosphere formation.
View Article and Find Full Text PDFContext: Circulating microRNAs (miRNAs) are emerging biomarkers of thyroid cancer.
Objective: This study sought to identify the profile of circulating miRNAs and its response to human recombinant TSH (rhTSH) in thyroid cancer patients with recurrent/persistent disease.
Methods: We obtained serum samples from 30 patients with differentiated thyroid cancer, 14 with recurrent/persistent disease and 16 with complete remission.
Background: Adenosine deaminases acting on RNA (ADARs) modify many cellular RNAs by catalyzing the conversion of adenosine to inosine (A-to-I), and their deregulation is associated with several cancers. We recently showed that A-to-I editing is elevated in thyroid tumors and that ADAR1 is functionally important for thyroid cancer cell progression. The downstream effectors regulated or edited by ADAR1 and the significance of ADAR1 deregulation in thyroid cancer remain, however, poorly defined.
View Article and Find Full Text PDFDICER1 plays a central role in microRNA biogenesis and functions as a tumor suppressor in thyroid cancer, which is the most frequent endocrine malignancy with a rapidly increasing incidence. Thyroid cancer progression is associated with loss of cell differentiation and reduced expression of thyroid differentiation genes and response to thyrotropin (TSH). Here we investigated whether a molecular link exists between DICER1 and thyroid differentiation pathways.
View Article and Find Full Text PDFAdenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. A-to-I editing of RNA is a widespread posttranscriptional process that has recently emerged as an important mechanism in cancer biology. A-to-I editing levels are high in several human cancers, including thyroid cancer, but ADAR1 editase-dependent mechanisms governing thyroid cancer progression are unexplored.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are important regulators of gene expression through their ability to destabilize mRNA and inhibit translation of target mRNAs. An ever-increasing number of studies have identified miRNAs as potential biomarkers for cancer diagnosis and prognosis, and also as therapeutic targets, adding an extra dimension to cancer evaluation and treatment. In the context of thyroid cancer, tumorigenesis results not only from mutations in important genes, but also from the overexpression of many miRNAs.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2019
In the last two decades, great strides have been made in the study of microRNAs in development and in diseases such as cancer, as reflected in the exponential increase in the number of reviews on this topic including those on undifferentiated and well-differentiated thyroid cancer. Nevertheless, few reviews have focused on understanding the functional significance of the most up- or down-regulated miRNAs in thyroid cancer for the main signaling pathways hyperactivated in this tumor type. The aim of this review is to discuss the major miRNAs targeting proteins of the MAPK, PI3K, and TGFβ pathways, to define their mechanisms of action through the 3'UTR regions of their target genes, and to describe how they affect thyroid tumorigenesis through their actions on cell proliferation, migration, and invasion.
View Article and Find Full Text PDFThe global downregulation of microRNAs (miRNAs) is emerging as a common hallmark of cancer. However, the mechanisms underlying this phenomenon are not well known. We identified that the oncogenic miR-146b-5p attenuates miRNA biosynthesis by targeting DICER1 and reducing its expression.
View Article and Find Full Text PDFNature
September 2018
Recent studies have shown that miR-146b is the most upregulated microRNA in thyroid cancer and has a central role in cancer progression through mechanisms that remain largely unidentified. As phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a fundamental oncogenic driver in many thyroid cancers, we explored a potential role for miR-146b and its target genes in PI3K/AKT activation. Among the predicted target genes of miR-146b, we found the tumor-suppressor phosphatase and tensin homolog (PTEN).
View Article and Find Full Text PDF