MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN.

Oncogene

Instituto de Investigaciones Biomédicas "Alberto Sols"; Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies have shown that miR-146b is the most upregulated microRNA in thyroid cancer and has a central role in cancer progression through mechanisms that remain largely unidentified. As phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a fundamental oncogenic driver in many thyroid cancers, we explored a potential role for miR-146b and its target genes in PI3K/AKT activation. Among the predicted target genes of miR-146b, we found the tumor-suppressor phosphatase and tensin homolog (PTEN). Constitutive overexpression of miR-146b in thyroid epithelial cell lines significantly decreased PTEN mRNA and protein levels by direct binding to its 3'-UTR. This was accompanied by PI3K/AKT hyperactivation, leading to the exclusion of FOXO1 and p27 from the nucleus and a corresponding increase in cellular proliferation. Moreover, miR-146b overexpression led to protection from apoptosis and an increased migration and invasion potential, regulating genes involved in epithelial-mesenchymal transition. Notably, with the single exception of E-cadherin expression, all of these outcomes could be reversed by PTEN coexpression. Further analysis showed that miR-146b directly inhibits E-cadherin expression through binding to its 3'-UTR. Interestingly, miR-146b inhibition in human thyroid tumor xenografts, using a synthetic and clinically amenable molecule, blocked tumor growth when delivered intratumorally. Importantly, this inhibition increased PTEN protein levels. In conclusion, our data define a novel mechanism of PI3K/AKT hyperactivation and outline a regulatory role for miR-146b in suppressing PTEN expression, a frequent observation in thyroid cancer. Both events are related to a more aggressive tumoral phenotype. Targeting miR-146b therefore represents a promising therapeutic strategy for the treatment of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-017-0088-9DOI Listing

Publication Analysis

Top Keywords

thyroid cancer
12
mir-146b
9
cancer progression
8
role mir-146b
8
target genes
8
protein levels
8
binding 3'-utr
8
pi3k/akt hyperactivation
8
e-cadherin expression
8
thyroid
6

Similar Publications

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Background: Thyroid nodules (TNs) are frequent and often benign. Accurately differentiating between benign and malignant nodules is crucial for proper management. This research aims to use ultrasonography to examine TNs and identify possible risk factors in order to improve patient outcomes and diagnostic accuracy.

View Article and Find Full Text PDF

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid malignancy and currently lacks effective treatment options. While anti-PD1 therapy has shown remarkable clinical results in some cases, only a subset of ATC patients responds to it. Eganelisib (IPI549), a highly selective PI3Kγ inhibitor, can alleviate the tumor immunosuppressive state by reducing the proportion of M2-like tumor associated macrophages, partially overcoming patient resistance to anti-PD1 therapy and synergizing with its efficacy.

View Article and Find Full Text PDF