Publications by authors named "Adrian Acuna-Ruiz"

RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures.

View Article and Find Full Text PDF

Thyroid nodules are a common endocrine condition with an increasing incidence over the decades. Data-independent acquisition has been widely utilized in discovery proteomics to identify disease biomarkers and therapeutic targets. To analyze the thyroid disease-related proteome in a high-throughput, reproducible and reliable manner, we introduce thyroid-specific peptide spectral libraries.

View Article and Find Full Text PDF

RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures.

View Article and Find Full Text PDF

Background: Inactivation of the Hippo pathway promotes Yap nuclear translocation, enabling execution of a transcriptional program that induces tissue growth. Genetic lesions of Hippo intermediates only identify a minority of cancers with illegitimate YAP activation. Yap has been implicated in resistance to targeted therapies, but the mechanisms by which YAP may impact adaptive resistance to MAPK inhibitors are unknown.

View Article and Find Full Text PDF

Background: RAS-to-ERK signaling is crucial for the onset and progression of advanced thyroid carcinoma, and blocking ERK dimerization provides a therapeutic benefit in several human carcinomas. Here we analyzed the effects of DEL-22379, a relatively specific ERK dimerization inhibitor, on the activation of the RAS-to-ERK signaling cascade and on tumor-related processes in vitro and in vivo.

Methods: We used a panel of four human anaplastic thyroid carcinoma (ATC) cell lines harboring BRAF or RAS mutations to analyze ERK dynamics and tumor-specific characteristics.

View Article and Find Full Text PDF

Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that 'sponge' microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions.

View Article and Find Full Text PDF

Thyroid cancer is the most common malignancy of the endocrine system, and its incidence has been steadily increasing. Advances in sequencing have allowed analysis of the entire cancer genome, and has provided new information on the genetic lesions and modifications responsible for the onset, progression, dedifferentiation and metastasis of thyroid carcinomas. Moreover, integrated genomics has advanced our understanding of the development of cancer and its behavior, and has facilitated the identification of new genetic mutations and molecular pathways.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are important regulators of gene expression through their ability to destabilize mRNA and inhibit translation of target mRNAs. An ever-increasing number of studies have identified miRNAs as potential biomarkers for cancer diagnosis and prognosis, and also as therapeutic targets, adding an extra dimension to cancer evaluation and treatment. In the context of thyroid cancer, tumorigenesis results not only from mutations in important genes, but also from the overexpression of many miRNAs.

View Article and Find Full Text PDF

Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on mesothelial-to-mesenchymal transition (MMT) in PD, identifying changes in gene expression that could serve as biomarkers for assessing peritoneal dysfunction.
  • * Significant differences in the expression of certain proteins (like TSP1, COL13, VEGFA, and GREM1) were found at different stages of MMT, suggesting that monitoring these proteins could help evaluate the severity of peritoneal issues in PD patients.
View Article and Find Full Text PDF