Publications by authors named "Joseph M Chan"

Molecular subtypes of small cell lung cancer (SCLC) have been described based on differential expression of the transcription factors (TFs) ASCL1, NEUROD1, and POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC circulating tumor cell-derived explant (CDX) model biobank. Here, we show that ATOH1 protein is detected in 7 of 81 preclinical models and 16 of 102 clinical samples of SCLC.

View Article and Find Full Text PDF

The accurate assignment of transcripts to their cells of origin remains the Achilles heel of imaging-based spatial transcriptomics, despite being critical for nearly all downstream analyses. Current cell segmentation methods are prone to over- and under-segmentation, misassign transcripts to cells, require manual intervention, and suffer from low sensitivity and scalability. We introduce segger, a versatile graph neural network based on a heterogeneous graph representation of individual transcripts and cells, that frames cell segmentation as a transcript-to-cell link prediction task and can leverage single-cell RNA-seq information to improve transcript assignments.

View Article and Find Full Text PDF

Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * Identifying high-risk patients is possible through TP53 and RB1 mutations, but there are currently no strategies to prevent this transformation.
  • * Targeting the CDC7 kinase with the inhibitor simurosertib may block NE transformation and improve responses to both targeted and standard chemotherapy in experimental models, indicating a potential new treatment approach for these cancers.
View Article and Find Full Text PDF
Article Synopsis
  • Targeting cell surface molecules with therapies like radioligands and antibodies has been effective in treating various cancers, but the impact of lineage plasticity on these markers is still poorly understood.
  • A specific example of lineage plasticity is the transformation of prostate adenocarcinoma to neuroendocrine prostate cancer, which poses significant treatment challenges and worsens patient survival rates.
  • Research using advanced single-cell analyses and large tumor sample studies revealed significant phenotypic variability and shared gene-regulatory networks between NEPC and small cell lung cancer, raising concerns about the effectiveness of current therapies while suggesting potential for better patient selection in clinical trials.
View Article and Find Full Text PDF

The olfactory epithelium undergoes neuronal regeneration from basal stem cells and is susceptible to olfactory neuroblastoma (ONB), a rare tumor of unclear origins. Employing alterations in Rb1/Trp53/Myc (RPM), we establish a genetically engineered mouse model of high-grade metastatic ONB exhibiting a NEUROD1 immature neuronal phenotype. We demonstrate that globose basal cells (GBCs) are a permissive cell of origin for ONB and that ONBs exhibit cell fate heterogeneity that mimics normal GBC developmental trajectories.

View Article and Find Full Text PDF

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival.

View Article and Find Full Text PDF

Introduction: Immune checkpoint blockade (ICB) with or without chemotherapy has a very modest benefit in patients with small cell lung cancer (SCLC). SCLC tumors are characterized by high tumor mutation burden (TMB) and low PD-L1 expression. Therefore, TMB and PD-L1 do not serve as biomarkers of ICB response in SCLC.

View Article and Find Full Text PDF

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I).

View Article and Find Full Text PDF
Article Synopsis
  • Paired single-cell RNA and T cell receptor sequencing (scRNA/TCR-seq) was used to analyze T cell dynamics in non-small cell lung cancer after immune checkpoint blockade, focusing on 187,650 T cells from various tissue regions.
  • The findings indicated that regions with active tumors had high levels of exhausted CD8 T cells, regulatory CD4 T cells (Tregs), and follicular helper T cells (TFH), showing changes in T cell populations based on their location relative to the tumor.
  • The study also tracked specific T cell clones over time, finding that tumor-specific T cells persist in the bloodstream for years following treatment, demonstrating a long-lasting immune response post-therapy.
View Article and Find Full Text PDF
Article Synopsis
  • Small cell lung cancer (SCLC) is a highly aggressive cancer with few treatment options, where tumor cell plasticity and immune evasion complicate therapies.
  • The study highlights CRACD, a protein often inactive in SCLC, as a key regulator that influences tumor cell behavior, with its loss leading to enhanced neuroendocrine plasticity and reduced immune response.
  • Targeting EZH2, a protein involved in gene regulation, presents a potential treatment strategy by restoring MHC-I expression, which can improve immune surveillance in CRACD-negative SCLC patients.
View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of 440 lung cancer samples showed that CD39+ CD8 T cells were linked to features like exhaustion and tumor reactivity, but only weakly associated with other tumor characteristics like PD-L1 and mutation burden.
  • * Increased levels of CD39+ CD8 T cells due to immune checkpoint blockade (ICB) were linked to better outcomes in ICB therapy, with a specific gene signature predicting benefits from ICB but not from chemotherapy in non-small cell lung cancer trials.
View Article and Find Full Text PDF

We report a protocol for obtaining high-quality single-cell transcriptomics data from human lung biospecimens acquired from core needle biopsies, fine-needle aspirates, surgical resection, and pleural effusions. The protocol relies upon the brief mechanical and enzymatic disruption of tissue, enrichment of live cells by fluorescence-activated cell sorting (FACS), and droplet-based single-cell RNA sequencing (scRNA-seq). The protocol also details a procedure for analyzing the scRNA-seq data.

View Article and Find Full Text PDF

Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity.

View Article and Find Full Text PDF

Introduction: SCLC is a highly aggressive neuroendocrine tumor that is characterized by early acquired therapeutic resistance and modest benefit from immune checkpoint blockade (ICB). Repression of the major histocompatibility complex class I (MHC-I) represents a key mechanism driving resistance to T cell-based immunotherapies.

Methods: We evaluated the role of the lysine-specific demethylase 1 (LSD1) as a determinant of MHC-I expression, functional antigen presentation, and immune activation in SCLC in vitro and in vivo through evaluation of both human SCLC cell lines and immunocompetent mouse models.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is an aggressive malignancy characterized by early metastasis and extreme lethality. The backbone of SCLC treatment over the past several decades has been platinum-based doublet chemotherapy, with the recent addition of immunotherapy providing modest benefits in a subset of patients. However, nearly all patients treated with systemic therapy quickly develop resistant disease, and there is an absence of effective therapies for recurrent and progressive disease.

View Article and Find Full Text PDF

Background: Lineage plasticity, the ability to transdifferentiate among distinct phenotypic identities, facilitates therapeutic resistance in cancer. In lung adenocarcinomas (LUADs), this phenomenon includes small cell and squamous cell (LUSC) histologic transformation in the context of acquired resistance to targeted inhibition of driver mutations. LUAD-to-LUSC transdifferentiation, occurring in up to 9% of EGFR-mutant patients relapsed on osimertinib, is associated with notably poor prognosis.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes.

View Article and Find Full Text PDF

Unlabelled: Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUAD) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre/posttransformation clinical samples.

View Article and Find Full Text PDF

Lineage plasticity, the ability of cells to transition from one committed developmental pathway to another, has been proposed as a source of intratumoural heterogeneity and of tumour adaptation to an adverse tumour microenvironment including exposure to targeted anticancer treatments. Tumour cell conversion into a different histological subtype has been associated with a loss of dependency on the original oncogenic driver, leading to therapeutic resistance. A well-known pathway of lineage plasticity in cancer - the histological transformation of adenocarcinomas to aggressive neuroendocrine derivatives - was initially described in lung cancers harbouring an EGFR mutation, and was subsequently reported in multiple other adenocarcinomas, including prostate cancer in the presence of antiandrogens.

View Article and Find Full Text PDF

Purpose: Patterns of resistance to first-line osimertinib are not well-established and have primarily been evaluated using plasma assays, which cannot detect histologic transformation and have differential sensitivity for copy number changes and chromosomal rearrangements.

Experimental Design: To characterize mechanisms of resistance to osimertinib, patients with metastatic -mutant lung cancers who received osimertinib at Memorial Sloan Kettering Cancer Center and had next-generation sequencing performed on tumor tissue before osimertinib initiation and after progression were identified.

Results: Among 62 patients who met eligibility criteria, histologic transformation, primarily squamous transformation, was identified in 15% of first-line osimertinib cases and 14% of later-line cases.

View Article and Find Full Text PDF

Introduction: EGFR-mutant lung cancers are clinically and genomically heterogeneous with concurrent RB transcriptional corepressor 1 (RB1)/tumor protein p53 (TP53) alterations identifying a subset at increased risk for small cell transformation. The genomic alterations that induce lineage plasticity are unknown.

Methods: Patients with EGFR/RB1/TP53-mutant lung cancers, identified by next-generation sequencing from 2014 to 2018, were compared to patients with untreated, metastatic EGFR-mutant lung cancers without both RB1 and TP53 alterations.

View Article and Find Full Text PDF

Background: Melanoma is a heterogeneous malignancy. We set out to identify the molecular underpinnings of high-risk melanomas, those that are likely to progress rapidly, metastasize, and result in poor outcomes.

Methods: We examined transcriptome changes from benign states to early-, intermediate-, and late-stage tumors using a set of 78 treatment-naive melanocytic tumors consisting of primary melanomas of the skin and benign melanocytic lesions.

View Article and Find Full Text PDF

The tree structure is currently the accepted paradigm to represent evolutionary relationships between organisms, species or other taxa. However, horizontal, or reticulate, genomic exchanges are pervasive in nature and confound characterization of phylogenetic trees. Drawing from algebraic topology, we present a unique evolutionary framework that comprehensively captures both clonal and reticulate evolution.

View Article and Find Full Text PDF