Publications by authors named "Daniel Unyi"

The accurate assignment of transcripts to their cells of origin remains the Achilles heel of imaging-based spatial transcriptomics, despite being critical for nearly all downstream analyses. Current cell segmentation methods are prone to over- and under-segmentation, misassign transcripts to cells, require manual intervention, and suffer from low sensitivity and scalability. We introduce segger, a versatile graph neural network based on a heterogeneous graph representation of individual transcripts and cells, that frames cell segmentation as a transcript-to-cell link prediction task and can leverage single-cell RNA-seq information to improve transcript assignments.

View Article and Find Full Text PDF