Publications by authors named "Jong-Ju Lee"

Postoperative adhesions are a common complication following abdominal surgery, affecting over 90% of patients and leading to significant morbidity. Current anti-adhesion strategies, such as the use of physical and chemical barriers, have limitations such as short retention time, mechanical fragility, and inefficient drug delivery. This study developed a pectin-based emulsion gel loaded with celecoxib to prevent adhesions and provide localized pain relief.

View Article and Find Full Text PDF

This study investigates the physicochemical transformation of ciprofloxacin (CIP) through hydrophobic ion pairing with five counter ions-sodium oleate, sodium laurate, sodium caprate, disodium pamoate, and sodium deoxycholate-to enhance compatibility with hydrophobic Poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Complexation efficiencies (CE) reached up to 92.26 %, with ciprofloxacin pamoate (CIP-PAM) achieving over 90 % CE at a 1:0.

View Article and Find Full Text PDF

Postoperative tissue adhesion is a well-recognized and common complication. Despite ongoing developments in anti-adhesion agents, complete prevention remains a challenge in clinical practice. Colorectal cancer necessitates both adhesion prevention and postoperative chemotherapy.

View Article and Find Full Text PDF

Delivering protein drugs through dry powder inhalation (DPI) remains a significant challenge. Liposomes offer a promising solution, providing protection for proteins from external environment and controlled release capabilities. Furthermore, the use of non-ionic surfactants plays a crucial role in protecting the activity of proteins because of how the surfactants positioning themselves at the liquid-gas interface during the spray-drying process.

View Article and Find Full Text PDF
Article Synopsis
  • Solid dispersion (SD) technology can enhance the bioavailability of poorly soluble drugs, like apixaban (APX), which has low water solubility and intestinal permeability, leading to less than 50% oral bioavailability.
  • A novel SD of APX was developed using Soluplus and characterized using various techniques to assess its solubility, permeability, and pharmacokinetics.
  • Results showed that the new APX SD had significantly improved solubility and permeability, resulting in over twice the bioavailability when tested in rats compared to conventional APX suspension.*
View Article and Find Full Text PDF

Objective: The purpose of this study was to examine the efficacy and perioperative complications associated with lumbar spinal fusion surgery, focusing on geriatric patients in the Republic of Korea.

Methods: We retrospectively investigated 485 patients with degenerative spinal diseases who had lumbar spinal fusion surgeries between March 2006 and December 2010 at our institution. Age, sex, comorbidity, American Society of Anesthesiologists (ASA) class, fusion segments, perioperative complications, and outcomes were analyzed in this study.

View Article and Find Full Text PDF

Background: Neuropathic pain is a chronic and intractable symptom associated with nerve injury. The periaqueductal gray (PAG) is important in the endogenous pain control system and is the main site of the opioidergic analgesia. To investigate whether neuropathic pain affects the endogenous pain control system, we examined the effect of neuropathic pain induced by sacral nerve transection on presynaptic GABA release, the kinetics of postsynaptic GABA-activated Cl- currents, and the modulatory effect of μ-opioid receptor (MOR) activation in mechanically isolated PAG neurons with functioning synaptic boutons.

View Article and Find Full Text PDF

The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals.

View Article and Find Full Text PDF

cAMP is known to regulate neurotransmitter release via protein kinase A (PKA)-dependent and/or PKA-independent signal transduction pathways at a variety of central synapses. Here we report the cAMP-mediated long-lasting enhancement of glycinergic transmission in developing rat spinal substantia gelatinosa neurons. Forskolin, an adenylyl cyclase activator, elicited a long-lasting increase in the amplitude of nerve-evoked glycinergic inhibitory postsynaptic currents (IPSCs), accompanied by a long-lasting decrease in the paired-pulse ratio in immature substantia gelatinosa neurons, and this forskolin-induced increase in glycinergic IPSCs decreased with postnatal development.

View Article and Find Full Text PDF

Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions.

View Article and Find Full Text PDF

Age-related changes in the effects of nitric oxide (NO) on neurons of the auditory cortex have not been determined. We therefore evaluated the anatomical changes and neurophysiological characteristics of these neurons in rats as a function of age. The numbers of cresyl violet stained cells, the numbers and areas of NADPH-d-positive neuronal cell bodies, and their optical density, were measured in Sprague-Dawley rats aged 24 months (aged group) and 4 months (control group).

View Article and Find Full Text PDF

Glycine and GABA are the primary inhibitory neurotransmitters in the spinal cord and brain stem, with glycine exerting its physiological roles by activating strychnine-sensitive ionotropic receptors. Glycine receptors are also expressed in the brain, including the cortex and hippocampus, but their physiological roles and pharmacological properties are largely unknown. Here, we report the pharmacological properties of functional glycine receptors in acutely isolated rat CA3 neurons using conventional whole-cell patch clamp techniques.

View Article and Find Full Text PDF

The adenosinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) was investigated in mechanically dissociated rat tuberomammillary nucleus (TMN) neurons using a conventional whole-cell patch clamp technique. Adenosine (100 microM) reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that adenosine acts presynaptically to decrease the probability of spontaneous GABA release. The adenosine action on GABAergic mIPSC frequency was completely blocked by 1 microM DPCPX, a selective A(1) receptor antagonist, and mimicked by 1 microM CPA, a selective A(1) receptor agonist.

View Article and Find Full Text PDF

The medial preoptic area plays an important role in the regulation of sexual behavior, and serotonin (5-hydroxytryptamine, 5-HT) exerts an inhibitory effect on sexual behavior by acting on the medial preoptic area region. This study was designed to clarify the inhibitory effect of 5-HT on the medial preoptic area neurons and to elucidate the electrophysiological mechanisms involved in the action of 5-HT. Superfusion of 100 nM 5-HT hyperpolarized the membrane potential and inhibited the action potential firing.

View Article and Find Full Text PDF

Sinapic acid is a phenylpropanoid compound and is found in various herbal materials and high-bran cereals. With the exception of its antioxidant activities, the pharmacological properties of sinapic acid have been rarely reported. The purpose of this study was to characterize the putative anxiolytic-like properties of sinapic acid using an elevated plus-maze (EPM) and hole-board test.

View Article and Find Full Text PDF

The medial preoptic area (MPOA) of the hypothalamus is critically involved in the regulation of male sexual behavior and has been implicated in several homeostatic processes. Serotonin (5-hydroxytryptamine, 5-HT) inhibits sexual behavior via effects in the MPOA, where there are high densities of 5-HT(1A) and 5-HT(1B) receptor subtypes. We used whole-cell recordings under voltage-clamp conditions to investigate the serotonergic modulation of gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission in mechanically dissociated rat MPOA neurons with native presynaptic nerve endings.

View Article and Find Full Text PDF

Oroxylin A is a flavonoid and was originally isolated from the root of Scutellaria baicalensis Georgi., one of the most important medicinal herbs in traditional Chinese medicine. The aim of this study was to investigate the ameliorating effects of oroxylin A on memory impairment using the passive avoidance test, the Y-maze test, and the Morris water maze test in mice.

View Article and Find Full Text PDF

The present study was designed to examine developmental changes of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in periaqueductal gray (PAG) neurons mechanically isolated from young (12- to 18-day) and adult (8- to 12-week) rats. While the frequency of mIPSCs was similar, the current amplitude in adult rats was significantly smaller than in young rats. In the study of mIPSC kinetics, all kinetic parameters except for the fast decay time in adult rats were smaller or shorter than in the case of young rats.

View Article and Find Full Text PDF

The descending pain control system is activated by opioid peptides mainly at the midbrain periaqueductal gray (PAG). Although activation of presynaptic opioid receptors has been reported to inhibit gamma-aminobutyric acid (GABA) release, the exact electrophysiological mechanisms are controversial. To elucidate the mechanisms involved in the opioid modulation of presynaptic GABA release, we isolated single PAG neurons with functionally intact synaptic terminals by a mechanical dissociation in the absence of enzyme.

View Article and Find Full Text PDF

Spinal dorsal horn (SDH) is one of important regions in both nociceptive transmission and antinociception. Opioid peptides produce analgesia via regulation of neurotransmitter release through modulation of voltage-dependent Ca(2+) channel (VDCC) in neuronal tissues. The modulatory effect of micro-opioid receptor (MOR) activation on VDCC was investigated in acutely isolated rat SDH neurons under the conventional whole-cell patch-clamp recording mode.

View Article and Find Full Text PDF

Background/objective: Neuroendocrine hormones are derived from the hypothalamus. The central nervous system, particularly the hypothalamus, is capable of modulating the cytolytic activity of adherent natural killer (NK) cells. In addition, electroacupuncture (EA) stimulation of the Zusanli (ST36) acupoint enhances splenic NK cell and cytokine activities in rats.

View Article and Find Full Text PDF