Sci Bull (Beijing)
July 2025
Grain size is one of the key factors determining grain weight and yield. However, it remains largely unknown how the auxin signal regulates grain size in rice. Here, a quantitative trait locus qGL1 for grain length was identified with recombinant inbred lines 9311 and Nipponbare (NIP), and fine-mapped to the OsABCB4 gene, which encodes a member of the ATP Binding Cassette B (ABCB) subfamily.
View Article and Find Full Text PDFGermplasm resources serve as the foundations of advancements in breeding and are crucial for maintaining food security. Wild rice species of the genus Oryza include rich sources of genetic diversity and high adaptability, making them a substantial resource for rice breeding. The discovery of wild-type cytoplasmic male sterility resources enabled the achievement of the 'three lines' goal in hybrid rice, significantly increasing rice yields.
View Article and Find Full Text PDFPlants (Basel)
January 2023
Leaf inclination is one of the most important components of the ideal architecture, which effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b.
View Article and Find Full Text PDFFront Plant Sci
September 2022
Leaf inclination is a vital agronomic trait and is important for plant architecture that affects photosynthetic efficiency and grain yield. To understand the molecular mechanisms underlying regulation of leaf inclination, we constructed an rice mutant--showing increased leaf inclination using CRISPR/Cas9 gene editing technology. encodes a nuclear protein that is expressed in the lamina joint (LJ) at different developmental stages in rice.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2022
Root architecture is one of the most important agronomic traits that determines rice crop yield. The primary root (PR) absorbs mineral nutrients and provides mechanical support; however, the molecular mechanisms of PR elongation remain unclear in rice. Here, the two loss-of-function T-DNA insertion mutants of root length regulator 4 (OsRLR4), osrlr4-1 and osrlr4-2 with longer PR, and three OsRLR4 overexpression lines, OE-OsRLR4-1/-2/-3 with shorter PR compared to the wild type/Hwayoung (WT/HY), were identified.
View Article and Find Full Text PDFMol Plant
October 2021
Grain size is one of the most important factors that control rice yield, as it is associated with grain weight (GW). To date, dozens of rice genes that regulate grain size have been isolated; however, the regulatory mechanism underlying GW control is not fully understood. Here, the quantitative trait locus qGL5 for grain length (GL) and GW was identified in recombinant inbred lines of 9311 and Nipponbare (NPB) and fine mapped to a candidate gene, OsAUX3.
View Article and Find Full Text PDFPlant Cell Environ
April 2019
In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock-down lines, osaux3-1 and osaux3-2, in wild-type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3-1 and osaux3-2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT.
View Article and Find Full Text PDF