Tissue-resident memory T cells (T) can be induced by infection and vaccination, and play a key role in maintaining long-term protective immunity against mucosal pathogens. Our studies explored the key factors and mechanisms affecting the differentiation, maturation, and stable residence of gastric epithelial CD4 T induced by Helicobacter pylori (Hp) vaccine and optimized Hp vaccination to promote the generation and residence of T. Cluster of differentiation (CD)38 regulated mitochondrial activity and enhanced transforming growth factor-β signal transduction to promote the differentiation and residence of gastric epithelial CD4 T by mediating the expression of CD105.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells that differentiate from myeloid cells, proliferate in cancer and inflammatory reactions, and mainly exert immunosuppressive functions. Nonetheless, the precise mechanisms that dictate both the accumulation and function of MDSCs remain only partially elucidated. In the course of our investigation, we observed a positive correlation between the content of MDSCs especially G-MDSCs and miR-9 level in the tumor tissues derived from miR-9 knockout MMTV-PyMT mice and 4T1 tumor-bearing mice with miR-9 overexpression.
View Article and Find Full Text PDFA novel bionic enzyme-linked immunosorbent assay (BELISA) based on double-antibody sandwich method is firstly designed for the detection of carbamazepine (CBZ) in human serum samples. In this BELISA system, cucurbit[7]uril (CB[7]) is employed as an artificial capture antibody (cAb), and molecularly imprinted polymers (MIPs) is used as an artificial detection antibody (dAb). Nanozymes (PdNPs) as signal generators are integrated with MIPs.
View Article and Find Full Text PDF