Publications by authors named "Jia-Chen Xu"

Heart failure, marked by rising morbidity and mortality rates, poses a significant health challenge. Recent studies suggest that deubiquitinating modification of proteins in cardiomyocytes is involved in the development of heart failure. YOD1 is a deubiquitinating enzyme (DUB) implicated in various diseases, including breast cancer, hematological tumors, pancreatic cancer, and vascular endothelial diseases.

View Article and Find Full Text PDF

Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues.

View Article and Find Full Text PDF

Atherosclerotic cardiovascular disease is closely correlated with elevated low density lipoprotein-cholesterol. In feeding state, glucose and insulin activate mammalian target of rapamycin 1 that phosphorylates the deubiquitylase ubiquitin-specific peptidase 20 (USP20). USP20 then stabilizes HMG-CoA reductase, thereby increasing lipid biosynthesis.

View Article and Find Full Text PDF

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating β-adrenergic receptors (β-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-β-AR-induced heart injuries and HF.

View Article and Find Full Text PDF

Hypertension is a leading risk factor of cardiovascular disease and mortality in the population worldwide. Recently, hundreds of genomic loci were reported for hypertension by GWAS, however, the most SNPs are located in intergenic regions of genome, where a functional cause is difficult to determine. In the current study, a TWAS of hypertension was conducted using 452,264 individuals including 84,640 patients.

View Article and Find Full Text PDF

The integrase strand transfer inhibitor (INSTI)-containing regimens are currently considered as the first-line treatment of human immunodeficiency virus (HIV) infection. Although possessing a common mechanism of action to inhibit HIV integrase irreversibly to stop HIV replication cycle, the INSTIs, including raltegravir, elvitegravir, dolutegravir, and bictegravir, differ in pharmacokinetic characteristics. While raltegravir undergoes biotransformation by the UDP-glucuronosyltransferases (UGTs), elvitegravir is primarily metabolized by cytochrome P450 (CYP) 3A4 and co-formulated with cobicistat to increase its plasma exposure.

View Article and Find Full Text PDF

Introduction: The optimal treatment for EGFR-mutant lung adenocarcinoma (LUAD) remains challenging because of intratumor heterogeneity. We aimed to explore a refined stratification model based on the integrated analysis of circulating tumor DNA (ctDNA) tracking.

Methods: ctDNA was prospectively collected at baseline and at every 8 weeks in patients with advanced treatment-naive EGFR-mutant LUAD under gefitinib treatment enrolled in a phase 2 trial and analyzed using next-generation sequencing of a 168-gene panel.

View Article and Find Full Text PDF

As the endoplasmic reticulum paralogue of Hsp90, Grp94 chaperones a small set of client proteins associated with some diseases, including cancer, primary open-angle glaucoma, and inflammatory disorders. Grp94-selective inhibition has been a potential therapeutic strategy for these diseases. In this study, inspired by the conclusion that ligand-induced "Phe199 shift" effect is the structural basis of Grp94-selective inhibition, a series of novel Grp94 selective inhibitors incorporating "benzamide" moiety were developed, among which compound 54 manifested the most potent Grp94 inhibitory activity with an IC value of 2 nM and over 1000-fold selectivity to Grp94 against Hsp90α.

View Article and Find Full Text PDF