ACS Appl Nano Mater
March 2025
We report a fully addressable smart textile display using quantum dot light-emitting diodes (QD-LEDs) featuring a highly durable electrode. The key innovation lies in the development of an ultrathin oxide/metal hybrid structure for the durable electrode, which achieves mechanical bending durability surpassing the indium tin oxide (ITO) electrode. The optimized electrode, composed of MoO and Au, exhibits a transmittance of = 81%, while maintaining a sheet resistance of = 17.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Thin-film transistors based on metal oxide semiconductors are essential for many unconventional electronic devices, such as flat panel displays, image sensors, medical detectors, and aerospace applications. However, the lack of a systemic understanding of the effects of X-ray irradiation on the device often limits their use in harsh space and heavy radiation environments. Here, we investigate the effects of X-ray irradiation on metal oxide thin-film transistors based on amorphous indium gallium zinc oxide (a-IGZO) and amorphous zinc tin oxide (a-ZTO) semiconductors.
View Article and Find Full Text PDFHomeostasis is essential in biological neural networks, optimizing information processing and experience-dependent learning by maintaining the balance of neuronal activity. However, conventional two-terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three-terminal oxide memtransistor-based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing.
View Article and Find Full Text PDFMelanogenesis, a natural responsive mechanism of human skin to harmful radiation, is a self-triggered defensive neural activity safeguarding the body from radiation exposure in advance. With the increasing significance of radiation shielding in diverse medical health care and wearable applications, a biomimetic neuromorphic optoelectronic system with adaptive radiation shielding capability is often needed. Here, we demonstrate a transparent and flexible metal oxide-based photovoltaic neuromorphic defensive system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
In recent years, considerable attention has focused on high-performance and flexible crystalline metal oxide thin-film transistors (TFTs). However, achieving both high performance and flexibility in semiconductor devices is challenging due to the inherently conductive and brittle nature of crystalline metal oxide. In this study, we propose a facile way to overcome this limitation by employing a junctionless (JL) TFT structure via oxygen plasma treatment of the crystalline indium-tin oxide (ITO) films.
View Article and Find Full Text PDFNeuromorphic olfactory systems have been actively studied in recent years owing to their considerable potential in electronic noses, robotics, and neuromorphic data processing systems. However, conventional gas sensors typically have the ability to detect hazardous gas levels but lack synaptic functions such as memory and recognition of gas accumulation, which are essential for realizing human-like neuromorphic sensory system. In this study, a seamless architecture for a neuromorphic olfactory system capable of detecting and memorizing the present level and accumulation status of nitrogen dioxide (NO) during continuous gas exposure, regulating a self-alarm implementation triggered after 147 and 85 s at a continuous gas exposure of 20 and 40 ppm, respectively.
View Article and Find Full Text PDFSci Adv
April 2023
An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies.
View Article and Find Full Text PDFNanoscale Horiz
March 2023
InP quantum dots (QDs) are attracting significant interest as a potentially less toxic alternative to Cd-based QDs in many research areas. Although InP-based core/shell QDs with excellent photoluminescence properties have been reported so far, sophisticated interface treatment to eliminate defects is often necessary. Herein, using aminophosphine as a seeding source of phosphorus, we find that HS can be efficiently generated from the reaction between a thiol and an alkylamine at high temperatures.
View Article and Find Full Text PDFWe propose a computational design framework to design the architecture of a white lighting system having multiple pixelated patterns of electric-field-driven quantum dot light-emitting diodes. The quantum dot of the white lighting system has been optimised by a system-level combinatorial colour optimisation process with the Nelder-Mead algorithm used for machine learning. The layout of quantum dot patterns is designed precisely using rigorous device-level charge transport simulation with an electric-field dependent charge injection model.
View Article and Find Full Text PDFMicromachines (Basel)
December 2020
Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli.
View Article and Find Full Text PDFMaterials (Basel)
December 2020
Micromachines (Basel)
November 2020
For high-speed and large-area active-matrix displays, metal-oxide thin-film transistors (TFTs) with high field-effect mobility, stability, and good uniformity are essential. Moreover, reducing the RC delay is also important to achieve high-speed operation, which is induced by the parasitic capacitance formed between the source/drain (S/D) and the gate electrodes. From this perspective, self-aligned top-gate oxide TFTs can provide advantages such as a low parasitic capacitance for high-speed displays due to minimized overlap between the S/D and the gate electrodes.
View Article and Find Full Text PDFFor wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Here, we demonstrate a side-gated in-plane structure of solution-processed amorphous oxide semiconductor ionotronic devices and logic circuits enabled by ion gel gate dielectrics with a monolithically integrated nanoscale passivation architecture. The large capacitance of the electric double layer (EDL) in the ion gel allows a device structure to be a side gate geometry, forming an in-plane structured amorphous In-Ga-Zn-O (-IGZO) ionotronic transistor, which can be translated into a simplified logic gate configuration with a low operation voltage. Particularly, the monolithic passivation of the coplanar electrodes offers advantages over conventional inhomogeneous passivation, mitigating unintentional parasitic leakage current through the ion gel dielectric layer.
View Article and Find Full Text PDFThe increasing interest in flexible and wearable electronics has demanded a dramatic improvement of mechanical robustness in electronic devices along with high-resolution implemented architectures. In this study, a site-specific stress-diffusive manipulation is demonstrated to fulfill highly robust and ultraflexible amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) and integrated circuits. The photochemically activated combustion sol-gel a-IGZO TFTs on a mesa-structured polyimide show an average saturation mobility of 6.
View Article and Find Full Text PDFFor the fabrication of next-generation flexible metal oxide devices, solution-based methods are considered as a promising approach because of their potential advantages, such as high-throughput, large-area scalability, low-cost processing, and easy control over the chemical composition. However, to obtain certain levels of electrical performance, a high process temperature is essential, which can significantly limit its application in flexible electronics. Therefore, this article discusses recent research conducted on developing low-temperature, solution-processed, flexible, metal oxide semiconductor devices, from a single thin-film transistor device to fully integrated circuits and systems.
View Article and Find Full Text PDFA new strategy is reported to achieve high-mobility, low-off-current, and operationally stable solution-processable metal-oxide thin-film transistors (TFTs) using a corrugated heterojunction channel structure. The corrugated heterojunction channel, having alternating thin-indium-tin-zinc-oxide (ITZO)/indium-gallium-zinc-oxide (IGZO) and thick-ITZO/IGZO film regions, enables the accumulated electron concentration to be tuned in the TFT off- and on-states via charge modulation at the vertical regions of the heterojunction. The ITZO/IGZO TFTs with optimized corrugated structure exhibit a maximum field-effect mobility >50 cm V s with an on/off current ratio of >10 and good operational stability (threshold voltage shift <1 V for a positive-gate-bias stress of 10 ks, without passivation).
View Article and Find Full Text PDFWe report a general strategy for obtaining high-quality, large-area metal-chalcogenide semiconductor films from precursors combining chelated metal salts with chalcoureas or chalcoamides. Using conventional organic solvents, such precursors enable the expeditious formation of chalco-gels, which are easily transformed into the corresponding high-performance metal-chalcogenide thin films with large, uniform areas. Diverse metal chalcogenides and their alloys (MQ : M = Zn, Cd, In, Sb, Pb; Q = S, Se, Te) are successfully synthesized at relatively low processing temperatures (<400°C).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
In this paper, we demonstrate high-performance and hysteresis-free solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) and high-frequency-operating seven-stage ring oscillators using a low-temperature photochemically activated AlO/ZrO bilayer gate dielectric. It was found that the IGZO TFTs with single-layer gate dielectrics such as AlO, ZrO, or sodium-doped AlO exhibited large hysteresis, low field-effect mobility, or unstable device operation owing to the interfacial/bulk trap states, insufficient band offset, or a substantial number of mobile ions present in the gate dielectric layer, respectively. To resolve these issues and to explain the underlying physical mechanisms, a series of electrical analyses for various single- and bilayer gate dielectrics was carried out.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
Oxide dielectric materials play a key role in a wide range of high-performance solid-state electronics from semiconductor devices to emerging wearable and soft bioelectronic devices. Although several previous advances are noteworthy, their typical processing temperature still far exceeds the thermal limitations of soft materials, impeding their wide utilization in these emerging fields. Here, we report an innovative route to form highly reliable aluminum oxide dielectric films using an ultralow-temperature (<60 °C) solution process with a class of oxide nanocluster precursors.
View Article and Find Full Text PDFIn this paper, we demonstrate high mobility solution-processed metal-oxide thin-film transistors (TFTs) by using a high-frequency-stable ionic-type hybrid gate dielectric (HGD). The HGD gate dielectric, a blend of sol-gel aluminum oxide (AlO) and poly(4-vinylphenol) (PVP), exhibited high dielectric constant (ε~8.15) and high-frequency-stable characteristics (1 MHz).
View Article and Find Full Text PDFHere, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2017
Although transparent conducting oxides (TCOs) have played a key role in a wide range of solid-state electronics from conventional optoelectronics to emerging electronic systems, the processing temperature and conductivity of solution-processed materials seem to be far exceeding the thermal limitations of soft materials and insufficient for high-perfomance large-area systems, respectively. Here, we report a strategy to form highly conductive and scalable solution-processed oxide materials and their successful translation into large-area electronic applications, which is enabled by photoassisted postfunctionalization at low temperature. The low-temperature fabrication of indium-tin-oxide (ITO) thin films was achieved by using photoignited combustion synthesis combined with photoassisted reduction process under hydrogen atmosphere.
View Article and Find Full Text PDF