Publications by authors named "Jennifer Senkler"

African nightshade (Solanum scabrum) is a vegetable of great importance in several African countries. Production by seed is constrained by limited access to high quality seed, leaving farmers unable to meet the growing demand. The aim of this study was to investigate effects of berry maturity stages (mature green and purple) on germination and protein components of African nightshade seeds.

View Article and Find Full Text PDF

Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features.

View Article and Find Full Text PDF

The marine, bloom-forming dinoflagellate CCMP 1329 (formerly ) has a genome atypical of eukaryotes, with a large size of ~4.15 Gbp, organized in plentiful, highly condensed chromosomes and packed in a dinoflagellate-specific nucleus (dinokaryon). Here, we apply microscopic and proteogenomic approaches to obtain new insights into this enigmatic nucleus of axenic .

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria function as the cell's power stations and are crucial for processes like respiration and cell death, relying on a specific mix of lipids for their structure and function.
  • Many lipids are produced in the endoplasmic reticulum and transferred to mitochondria, but the understanding of mitochondrial lipid biosynthesis and maintenance is still limited.
  • This study analyzes the lipid composition of mitochondria from Arabidopsis leaves and identifies proteins involved in lipid metabolism, proposing mechanisms for lipid generation and suggesting avenues for future research on their roles in plant biochemistry.
View Article and Find Full Text PDF

Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.

View Article and Find Full Text PDF

Natural variability of stress tolerance in halophytic plants is of significance both ecologically and in view of identifying molecular traits for salt tolerance in plants. Using ecophysiological and proteomic analyses, we address these phenomena in two Tunisian accessions of the oilseed halophyte, Cakile maritima Scop., thriving on arid and semi-arid Mediterranean bioclimatic stages (Djerba and Raoued, respectively), with a special emphasis on the leaves.

View Article and Find Full Text PDF

European mistletoe (Viscum album) is a hemiparasitic flowering plant that is known for its very special life cycle and extraordinary biochemical properties. Particularly, V. album has an unusual mode of cellular respiration that takes place in the absence of mitochondrial complex I.

View Article and Find Full Text PDF

Mitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. Complex I is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and the 51-subunit complex I from the green alga Polytomella sp.

View Article and Find Full Text PDF

Cytidine-to-uridine RNA editing is a posttranscriptional process in plant organelles, mediated by specific pentatricopeptide repeat (PPR) proteins. In angiosperms, hundreds of sites undergo RNA editing. By contrast, only 13 sites are edited in the moss () Some are conserved between the two species, like the mitochondrial editing site nad5eU598RC.

View Article and Find Full Text PDF

Among the most intriguing features characterizing extremophile plants is their ability to rapidly recover growth activity upon stress release. Here, we investigated the responses of the halophyte C. maritima to drought and recovery at both physiological and leaf proteome levels.

View Article and Find Full Text PDF

NaCl stress is a major abiotic stress factor limiting the productivity and the geographical distribution of many plant species. Although halophytes are able to withstand and even to require salt in the rhizosphere, roots are the most sensitive organs to salinity. Here, we investigate the variability of salt tolerance in two Tunisian accessions of the halophyte Cakile maritima (Raoued and Djerba, harvested from the semi-arid and arid Mediterranean bioclimatic stages, respectively) with a special emphasis on the proteomic changes in roots.

View Article and Find Full Text PDF

The mitochondrial oxidative phosphorylation (OXPHOS) system, which is based on the presence of five protein complexes, is in the very center of cellular ATP production. Complexes I to IV are components of the respiratory electron transport chain that drives proton translocation across the inner mitochondrial membrane. The resulting proton gradient is used by complex V (the ATP synthase complex) for the phosphorylation of ADP.

View Article and Find Full Text PDF

The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position.

View Article and Find Full Text PDF

The succinate dehydrogenase complex (complex II) is a highly conserved protein complex composed of the SDH1 to SDH4 subunits in bacteria and in the mitochondria of animals and fungi. The reason for the occurrence of up to four additional subunits in complex II of plants, termed SDH5 to SDH8, so far is a mystery. Here, we present a biochemical approach to investigate the internal subunit arrangement of Arabidopsis (Arabidopsis thaliana) complex II.

View Article and Find Full Text PDF

Mitochondria are central to cellular metabolism and energy conversion. In plants they also enable photosynthesis through additional components and functional flexibility. A majority of those processes relies on the assembly of individual proteins to larger protein complexes, some of which operate as large molecular machines.

View Article and Find Full Text PDF

Tomato spotted wilt virus (TSWV) is mainly vectored by Frankliniella occidentalis Pergande, and it potentially activates the vector's immune response. However, molecular background of the altered immune response is not clearly understood. Therefore, using a proteomic approach, we investigated the immune pathways that are activated in F.

View Article and Find Full Text PDF

The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I.

View Article and Find Full Text PDF

The mitochondrial NADH dehydrogenase complex (complex I) consists of several functional domains which independently arose during evolution. In higher plants, it contains an additional domain which includes proteins resembling gamma-type carbonic anhydrases. The Arabidopsis genome codes for five complex I-integrated gamma-type carbonic anhydrases (γCA1, γCA2, γCA3, γCAL1, γCAL2), but only three copies of this group of proteins form an individual extra domain.

View Article and Find Full Text PDF