Defining the lipidome of Arabidopsis leaf mitochondria: Specific lipid complement and biosynthesis capacity.

Plant Physiol

Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, 37077 Goettingen, Germany.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mitochondria are often considered as the power stations of the cell, playing critical roles in various biological processes such as cellular respiration, photosynthesis, stress responses, and programmed cell death. To maintain the structural and functional integrities of mitochondria, it is crucial to achieve a defined membrane lipid composition between different lipid classes wherein specific proportions of individual lipid species are present. Although mitochondria are capable of self-synthesizing a few lipid classes, many phospholipids are synthesized in the endoplasmic reticulum and transferred to mitochondria via membrane contact sites, as mitochondria are excluded from the vesicular transportation pathway. However, knowledge on the capability of lipid biosynthesis in mitochondria and the precise mechanism of maintaining the homeostasis of mitochondrial lipids is still scarce. Here we describe the lipidome of mitochondria isolated from Arabidopsis (Arabidopsis thaliana) leaves, including the molecular species of glycerolipids, sphingolipids, and sterols, to depict the lipid landscape of mitochondrial membranes. In addition, we define proteins involved in lipid metabolism by proteomic analysis and compare our data with mitochondria from cell cultures since they still serve as model systems. Proteins putatively localized to the membrane contact sites are proposed based on the proteomic results and online databases. Collectively, our results suggest that leaf mitochondria are capable-with the assistance of membrane contact site-localized proteins-of generating several lipid classes including phosphatidylethanolamines, cardiolipins, diacylgalactosylglycerols, and free sterols. We anticipate our work to be a foundation to further investigate the functional roles of lipids and their involvement in biochemical reactions in plant mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069894PMC
http://dx.doi.org/10.1093/plphys/kiad035DOI Listing

Publication Analysis

Top Keywords

lipid classes
12
membrane contact
12
mitochondria
11
lipid
9
leaf mitochondria
8
contact sites
8
defining lipidome
4
lipidome arabidopsis
4
arabidopsis leaf
4
mitochondria specific
4

Similar Publications

Tenebrio molitor L. (Coleoptera Tenebrionidae) is 1 of the 3 most important species of industrialized insects worldwide. Its potential as a substitute for fish meal in animal feed formulations and as a source of protein and lipid for human consumption has increased over the years.

View Article and Find Full Text PDF

Fetal bovine serum (FBS) is an undefined additive that is ubiquitous to mammalian cell culture media and whose functional contributions to promoting cell proliferation remain poorly understood. Efforts to replace serum supplementation in culture media have been hindered by an incomplete understanding of the environmental requirements fulfilled by FBS. Here, we use a combination of live-cell imaging and quantitative lipidomics to elucidate the role of serum in supporting proliferation.

View Article and Find Full Text PDF

Pulmonary delivery of small circular RNA vaccines for influenza prevention.

J Control Release

September 2025

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Bioinnovations in Brain Cancer, Biointerfaces Institute; The Developmental Therapeutics Program, Rogel Cancer Center; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109,

Lipid nanoparticles (LNPs) have played an instrumental role in the delivery of RNA therapeutics and vaccines, including the emerging class of synthetic circular RNA (circRNA). Pulmonary vaccines hold the potential to prevent various respiratory infectious diseases, such as influenza caused by influenza infection. Here, we report the pulmonary delivery of LNPs loaded with highly stable small circRNA vaccine for influenza prevention.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are chemical modifications that occur on specific amino acid residues after protein biosynthesis, which can affect protein function by altering protein structure, localization and activity, thus expanding protein diversity. Extensive research has demonstrated that PTMs can regulate various metabolic processes, such as glucose and lipid metabolism, as well as immune modulation in tumor cells, thereby promoting tumor initiation, progression, and metastasis. In this article, we systematically review a class of emerging PTMs whose roles in tumor metabolism and immune regulation have gradually been recognized in recent years, including six types: lactylation, palmitoylation, SUMOylation, succinylation, crotonylation, and myristoylation.

View Article and Find Full Text PDF

Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.

View Article and Find Full Text PDF