Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
NaCl stress is a major abiotic stress factor limiting the productivity and the geographical distribution of many plant species. Although halophytes are able to withstand and even to require salt in the rhizosphere, roots are the most sensitive organs to salinity. Here, we investigate the variability of salt tolerance in two Tunisian accessions of the halophyte Cakile maritima (Raoued and Djerba, harvested from the semi-arid and arid Mediterranean bioclimatic stages, respectively) with a special emphasis on the proteomic changes in roots. Seedlings were hydroponically grown for one month under salt-free conditions and subsequently at three salinities (0, 100, and 300 mM NaCl). Physiological parameters (plant growth, water content, Na, K contents) and root protein profiles were analyzed. Plant biomass was higher in Raoued than in Djerba but the latter was impacted to a lesser extent by salinity, notably due to lower sodium accumulation and higher selectivity for K. 121 and 97 salt-responsive proteins were identified in Djerba and Raoued accessions, respectively. These proteins can be assigned to several different functional categories: protein metabolism, nucleotide metabolism, amino acid metabolism, glutathione metabolism, translation and ribosome biogenesis, carbohydrate and energy metabolism, and reactive oxygen species regulation and detoxification. The comparative proteome analysis revealed that 33 proteins were salt-responsive in both accessions, while 88 and 64 proteins were salt-responsive only in the Djerba or Raoued accessions, respectively. Our results give deeper insights into the plasticity of salt-stress response of C. maritima in its native ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2018.06.029 | DOI Listing |