Publications by authors named "Jeffrey A Seminoff"

East Pacific green turtles (Chelonia mydas) inhabit tropical and subtropical waters along the western coast of the Americas. This population uses the Gulf of California, Mexico, as a primary area for feeding and refuge, where they face various stressors. This study aimed to establish hematological reference intervals for healthy green turtles in this area (n = 326), as well as evaluate seasonal variations in blood parameters and compare values between healthy turtles and individuals affected by fibropapillomatosis (n = 25).

View Article and Find Full Text PDF

Habitat-based approaches to animal conservation are bolstered by an understanding of resource selection, that is, use of resources (i.e., habitat features) relative to their availability in the environment.

View Article and Find Full Text PDF

The cryptic and aquatic life histories of sea turtles have made them a challenging group to directly observe, leaving significant knowledge gaps regarding social behavior and fine-scale elements of habitat use. Using a custom-designed animal-borne camera, we observed previously undocumented behaviors by green turtles () at a foraging area in San Diego Bay, a highly urbanized ecosystem in California, USA. We deployed a suction-cup-attached pop-off camera (manufactured by Customized Animal Tracking Solutions) on 11 turtles (mean straight carapace length = 84.

View Article and Find Full Text PDF

Chelonians (turtles, tortoises, and sea turtles) grow scute keratin in sequential layers over time. Once formed, scute keratin acts as an inert reservoir of environmental information. For chelonians inhabiting areas with legacy or modern nuclear activities, their scute has the potential to act as a time-stamped record of radionuclide contamination in the environment.

View Article and Find Full Text PDF

Trindade Island is an important wildlife refuge in the South Atlantic Ocean and hosts the largest nesting population of green turtles (Chelonia mydas) in Brazil, about which temporal ecological dynamics are still not well understood. The present study examines 23 years of nesting for green turtles at this remote island to evaluate annual mean nesting size (MNS) changes and post-maturity somatic growth rates. Our results show a significant decrease in annual MNS over the study; Whereas MNS during the first three consecutively monitored years (1993-1995) was 115.

View Article and Find Full Text PDF

To address a major knowledge gap for flatback sea turtles (Natator depressus), a species endemic to Australia and considered 'Data Deficient' for IUCN Red List assessment, we present the first-ever skeletochronology-derived age and growth rate estimates for this species. Using a rare collection of bone samples gathered from across northern Australia, we applied skeletochronology and characterized the length-at-age relationship, established baseline growth rates from the hatchling to adult life stages, and produced empirical estimates of age-at- and size-at-sexual-maturation (ASM, SSM). We analyzed humeri from 74 flatback sea turtles ranging in body size from 6.

View Article and Find Full Text PDF

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence.

View Article and Find Full Text PDF

Background: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms' responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers.

View Article and Find Full Text PDF

Although hydrogen isotopes (δ2H) are commonly used as tracers of animal movement, minimal research has investigated the use of δ2H as a proxy to quantify resource and habitat use. While carbon and nitrogen are ultimately derived from a single source (food), the proportion of hydrogen in consumer tissues originates from two distinct sources: body water and food. Before hydrogen isotopes can be effectively used as a resource and habitat tracer, we need estimates of (net) discrimination factors (Δ2HNet) that account for the physiologically mediated differences in the δ2H values of animal tissues relative to that of the food and water sources they use to synthesize tissues.

View Article and Find Full Text PDF

Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward-moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold-sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical-temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments.

View Article and Find Full Text PDF

Plasma biochemistry profiles aid health assessment of marine turtles, but knowledge of the influence of regional biological factors (e.g., habitat, diet) on marine turtle blood plasma values is limited.

View Article and Find Full Text PDF

Deriving robust historical population trends for long-lived species subject to human exploitation is challenging in scenarios where long-term scientific data are scarce or unavailable, as often occurs for species affected by small-scale fisheries and subsistence hunting. The importance of Local Ecological Knowledge (LEK) in data-poor scenarios is increasingly recognized in conservation, both in terms of uncovering historical trends and for engaging community stewardship of historic information. Building on previous work in marine historical ecology and local ecological knowledge, we propose a mixed socio-ecological framework to reliably document and quantify LEK to reconstruct historical population trends.

View Article and Find Full Text PDF

Turtles and tortoises (chelonians) have been integral components of global ecosystems for about 220 million years and have played important roles in human culture for at least 400,000 years. The chelonian shell is a remarkable evolutionary adaptation, facilitating success in terrestrial, freshwater and marine ecosystems. Today, more than half of the 360 living species and 482 total taxa (species and subspecies combined) are threatened with extinction.

View Article and Find Full Text PDF

Within Southern California, east Pacific green sea turtles (Chelonia mydas) forage year-round, taking advantage of diverse food resources, including seagrass, marine algae, and invertebrates. Assessing persistent organic pollutants (POP) in green turtle aggregations in the Seal Beach National Wildlife Refuge (SBNWR, n = 17) and San Diego Bay (SDB, n = 25) can help quantify contamination risks for these populations. Blood plasma was analyzed for polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs).

View Article and Find Full Text PDF

Rationale: Stable isotope analysis is used to understand the foraging habits and movements of a diverse set of organisms. Variability in stable isotope ratios among tissues derived from the same animal makes it difficult to compare data among study results in which different tissue types are evaluated. Isotopic relationships between two green turtle (Chelonia mydas) tissue types, skin and unhatched egg contents are unknown.

View Article and Find Full Text PDF

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats.

View Article and Find Full Text PDF

Anthropogenic climate change is widely considered a major threat to global biodiversity, such that the ability of a species to adapt will determine its likelihood of survival. Egg-burying reptiles that exhibit temperature-dependent sex determination, such as critically endangered hawksbill turtles (), are particularly vulnerable to changes in thermal regimes because nest temperatures affect offspring sex, fitness, and survival. It is unclear whether hawksbills possess sufficient behavioral plasticity of nesting traits (i.

View Article and Find Full Text PDF

Foraging aggregations of east Pacific green sea turtles (Chelonia mydas) inhabit the Seal Beach National Wildlife Refuge (SBNWR) and San Diego Bay (SDB), two habitats in southern California, USA, located near urbanized areas. Both juvenile and adult green turtles forage in these areas and exhibit high site fidelity, which potentially exposes green turtles to anthropogenic contaminants. We assessed 21 trace metals (TM) bioaccumulated in green turtle scute and red blood cell (RBC) samples collected from SBNWR (n = 16 turtles) and SDB (n = 20 turtles) using acid digestion and inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Evaluating long-term drivers of foraging ecology and population productivity is crucial for providing ecological baselines and forecasting species responses to future environmental conditions. Here, we examine the trophic ecology and habitat use of North Atlantic leatherback turtles (St. Croix nesting population) and investigate the effects of large-scale oceanographic conditions on leatherback foraging dynamics.

View Article and Find Full Text PDF

The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles () in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry.

View Article and Find Full Text PDF

Rationale: The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ C) and nitrogen (Δ N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild.

Methods: We overcame these constraints and determined the Δ C and Δ N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors.

View Article and Find Full Text PDF

Ontogenetic niche theory predicts that individuals may undergo one or more changes in habitat or diet throughout their lifetime to maintain optimal growth rates, or to optimize trade-offs between mortality risk and growth. We combine skeletochronological and stable nitrogen isotope (δN) analyses of sea turtle humeri (n = 61) to characterize the growth dynamics of juvenile loggerhead sea turtles (Caretta caretta) during an oceanic-to-neritic ontogenetic shift. The primary objective of this study was to determine how ontogenetic niche theory extends to sea turtles, and to individuals with different patterns of resource use (discrete shifters, n = 23; facultative shifters n = 14; non-shifters, n = 24).

View Article and Find Full Text PDF

Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years.

View Article and Find Full Text PDF

Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans.

View Article and Find Full Text PDF

Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA) to determine sex in immature/juvenile sea turtles.

View Article and Find Full Text PDF