Publications by authors named "Karen A Bjorndal"

Recent work has shown testudines can escape actuarial senescence for extended periods. However, understanding how the interplay between somatic aging and reproductive investment in highly fecund, long-lived ectotherms align with broader phylogenetic patterns remains a critical knowledge gap. Here, we present a comprehensive demographic analysis of age-specific changes in reproduction and mortality using a unique dataset on captive, known-aged green sea turtles Chelonia mydas.

View Article and Find Full Text PDF

Understanding the energetic demands of reproduction on female sea turtles is crucial for devising effective conservation strategies aimed at supporting the reproductive health and resilience of populations at nesting habitats. We studied the ovaries of 69 green turtles () preyed upon by jaguars () during three nesting seasons at Tortuguero, Costa Rica, the main green turtle Atlantic nesting beach. Our findings revealed a bimodal distribution of vitellogenic follicles, with 'dominant' follicles destined for ovulation and 'non-dominant' follicles to be resorbed.

View Article and Find Full Text PDF
Article Synopsis
  • Compensatory growth (CG) in juvenile green turtles occurs after food restriction, leading to accelerated growth when food becomes available again, but it may have negative consequences.
  • Turtles undergoing different feeding regimens were analyzed for bone structure, revealing that those with partial CG showed better food conversion efficiency after realimentation.
  • The study found that when food availability increased, the restoration of bone growth prioritized lengths over widths and favored certain microstructural attributes, indicating shifts in nutrient allocation that may influence long-term bone health.
View Article and Find Full Text PDF

The threat of population declines caused by pelagic longline fisheries in the Atlantic has increased the concern to find strategies that minimize the bycatch and mortality of non-target marine animals. Gear modification, such as the use of circle hooks instead of conventional J-hooks, has been identified as an effective bycatch reduction strategy in different pelagic longline fisheries around the world. This study aimed to verify the effectiveness of the use of circle hooks by quantifying catch rates, relative size selectivity, and anatomical hooking position for the most common target species (swordfish, Xiphias gladius, and blue shark, Prionace glauca), and some bycatch species (loggerhead sea turtles, Caretta caretta, and shortfin mako, Isurus oxyrinchus) caught by the Azorean longline fishing fleet.

View Article and Find Full Text PDF

Drifting aggregations of Sargassum algae provide critical habitat for endemic, endangered, and commercially important species. They may also provide favorable microclimates for associated fauna. To quantify thermal characteristics of holopelagic Sargassum aggregations, we evaluated thermal profiles of 50 aggregations in situ in the Sargasso Sea.

View Article and Find Full Text PDF

As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean.

View Article and Find Full Text PDF

Survivorship of early life stages is key for the well-being of sea turtle populations, yet studies on animals that distribute around oceanic areas are very challenging. So far, the information on green turtles (Chelonia mydas) that use the open NE Atlantic as feeding grounds is scarce. Strandings occurring in oceanic archipelagos can provide relevant information about the biology, ecology and current anthropogenic pressures for megafauna inhabiting the open ocean.

View Article and Find Full Text PDF

Reconstructing past events of hybridization and population size changes are required to understand speciation mechanisms and current patterns of genetic diversity, and ultimately contribute to species' conservation. Sea turtles are ancient species currently facing anthropogenic threats including climate change, fisheries, and illegal hunting. Five of the seven extant sea turtle species are known to currently hybridize, especially along the Brazilian coast where some populations can have ~32%-42% of hybrids.

View Article and Find Full Text PDF

Although hydrogen isotopes (δ2H) are commonly used as tracers of animal movement, minimal research has investigated the use of δ2H as a proxy to quantify resource and habitat use. While carbon and nitrogen are ultimately derived from a single source (food), the proportion of hydrogen in consumer tissues originates from two distinct sources: body water and food. Before hydrogen isotopes can be effectively used as a resource and habitat tracer, we need estimates of (net) discrimination factors (Δ2HNet) that account for the physiologically mediated differences in the δ2H values of animal tissues relative to that of the food and water sources they use to synthesize tissues.

View Article and Find Full Text PDF

What happens in meadows after populations of natural grazers rebound following centuries of low abundance? Many seagrass ecosystems are now experiencing this phenomenon with the recovery of green turtles (Chelonia mydas), large-bodied marine herbivores that feed on seagrasses. These seagrass ecosystems provide a rare opportunity to study ecosystem-wide shifts that result from a recovery of herbivores. We evaluate changes in regulation of seagrass productivity in a naturally grazed tropical ecosystem by (1) comparing Thalassia testudinum productivity in grazed and ungrazed areas and (2) evaluating potential regulating mechanisms of T.

View Article and Find Full Text PDF

Turtles and tortoises (chelonians) have been integral components of global ecosystems for about 220 million years and have played important roles in human culture for at least 400,000 years. The chelonian shell is a remarkable evolutionary adaptation, facilitating success in terrestrial, freshwater and marine ecosystems. Today, more than half of the 360 living species and 482 total taxa (species and subspecies combined) are threatened with extinction.

View Article and Find Full Text PDF

Population assessments conducted at reproductive sites of migratory species necessitate understanding the foraging-area origins of breeding individuals. Without this information, efforts to contextualize changes in breeding populations and develop effective management strategies are compromised. We used stable isotope analysis of tissue samples collected from loggerhead sea turtles (Caretta caretta) nesting at seven sites in the Northern Recovery Unit (NRU) of the eastern United States (North Carolina, South Carolina and Georgia) to assign females to three separate foraging areas in the Northwest Atlantic Ocean (NWA).

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the population composition and dynamics of Caribbean green turtles in juvenile feeding grounds, particularly in Lac Bay, Bonaire, highlighting the importance of understanding migratory megafauna for conservation efforts.
  • Genetic analyses revealed a significant shift in population composition between 2006-2007 and 2015-2016, with juvenile recruitment patterns changing notably from different Caribbean regions.
  • The findings suggest potential issues in reproductive output at certain rookeries and emphasize the need for conservation of juvenile habitats and genetic monitoring to better track megafauna population trends.
View Article and Find Full Text PDF

After hatching, juveniles of most sea turtle species undertake long migrations across ocean basins and remain in oceanic habitats for several years. Assessing population abundance and demographic parameters during this oceanic stage is challenging. Two long-recognized deficiencies in population assessment are (i) reliance on trends in numbers of nests or reproductive females at nesting beaches and (ii) ignorance of factors regulating recruitment to the early oceanic stage.

View Article and Find Full Text PDF

Population differentiation and diversification depend in large part on the ability and propensity of organisms to successfully disperse. However, our understanding of these processes in organisms with high dispersal ability is biased by the limited genetic resolution offered by traditional genotypic markers. Many neustonic animals disperse not only as pelagic larvae, but also as juveniles and adults while drifting or rafting at the surface of the open ocean.

View Article and Find Full Text PDF

Comparative syntheses of key demographic parameters are critical not only for identifying data gaps, but also for evaluating sources of heterogeneity among estimates. Because demographic studies frequently exhibit heterogeneity, evaluating sources of heterogeneity among estimates can inform biological patterns and conservation actions more broadly. To better understand adult survival in marine turtles and avoid drawing inaccurate conclusions from current estimates, we conducted a comprehensive meta-analysis to test how heterogeneity among estimates was partitioned among phylogenetic, biogeographic and methodological factors.

View Article and Find Full Text PDF

Blood analyte reference intervals are scarce for immature life stages of the loggerhead sea turtle (). The objectives of this study were to (1) document reference intervals of packed cell volume (PCV) and 20 plasma chemistry analytes from wild oceanic-juvenile stage loggerhead turtles from Azorean waters, (2) investigate correlations with body size (minimum straight carapace length: SCL) and (3) compare plasma chemistry data to those from older, larger neritic juveniles (<80 cm SCL) and adult loggerheads (≥80 cm SCL) that have recruited to the West Atlantic in waters around Cape Canaveral, Florida. Twenty-eight Azorean loggerhead turtles with SCL of 17.

View Article and Find Full Text PDF

Seagrass meadows are important sites for carbon storage. Green turtles (Chelonia mydas) are marine megaherbivores that consume seagrass throughout much of their global range. With successful conservation efforts, turtle abundance will increase, leading to more meadows being returned to their natural grazed state.

View Article and Find Full Text PDF

Juvenile oceanic-stage sea turtles are particularly vulnerable to the increasing quantity of plastic coming into the oceans. In this study, we analysed the gastrointestinal tracts of 24 juvenile oceanic-stage loggerheads (Caretta caretta) collected off the North Atlantic subtropical gyre, in the Azores region, a key feeding ground for juvenile loggerheads. Twenty individuals were found to have ingested marine debris (83%), composed exclusively of plastic items (primarily polyethylene and polypropylene) identified by μ-Fourier Transform Infrared Spectroscopy.

View Article and Find Full Text PDF

Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers.

View Article and Find Full Text PDF

Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism.

View Article and Find Full Text PDF

Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data.

View Article and Find Full Text PDF

Determining the effects of lifelong intake patterns on performance is challenging for many species, primarily because of methodological constraints. Here, we used a parthenogenetic insect (Carausius morosus) to determine the effects of limited and unlimited food availability across multiple life-history stages. Using a parthenogen allowed us to quantify intake by juvenile and adult females and to evaluate the morphological, physiological, and life-history responses to intake, all without the confounding influences of pair-housing, mating, and male behavior.

View Article and Find Full Text PDF

Rationale: Stable isotope analysis has been used extensively to provide ecological information about diet and foraging location of many species. The difference in isotopic composition between animal tissue and its diet, or the diet-tissue discrimination factor, varies with tissue type. Therefore, direct comparisons between isotopic values of tissues are inaccurate without an appropriate conversion factor.

View Article and Find Full Text PDF