98%
921
2 minutes
20
Deriving robust historical population trends for long-lived species subject to human exploitation is challenging in scenarios where long-term scientific data are scarce or unavailable, as often occurs for species affected by small-scale fisheries and subsistence hunting. The importance of Local Ecological Knowledge (LEK) in data-poor scenarios is increasingly recognized in conservation, both in terms of uncovering historical trends and for engaging community stewardship of historic information. Building on previous work in marine historical ecology and local ecological knowledge, we propose a mixed socio-ecological framework to reliably document and quantify LEK to reconstruct historical population trends. Our method can be adapted by interdisciplinary teams to study various long-lived taxa with a history of human use. We demonstrate the validity of our approach by reconstructing long-term abundance data for the heavily-exploited East Pacific green turtle () in Baja California, Mexico, which was driven to near extinction by a largely unregulated fishery from the early 1950s to the 1980s. No scientific baseline abundance data were available for this time-frame because recent biological surveys started in 1995 after all green turtle fisheries in the area were closed. To fill this data gap, we documented LEK among local fishers using ethnographic methods and obtained verified, qualitative data to understand the socio-environmental complexity of the green turtle fishery. We then established an iterative framework to synthesize and quantify LEK using generalized linear models (GLMs) and nonlinear regression (NLR) to generate a standardized, LEK-derived catch-per-unit-effort (CPUE) time-series. CPUE is an index of abundance that is compatible with contemporary scientific survey data. We confirmed the accuracy of LEK-derived CPUE estimates via comparisons with fisheries statistics available for 1962-1982. We then modeled LEK-derived abundance trends prior to 1995 using NLR. Our model established baseline abundance and described historical declines, revealing that the most critical (exponential) decline occurred between 1960 and 1980. This robust integration of LEK data with ecological science is of critical value for conservation and management, as it contributes to a holistic view of a species' historic and contemporary conservation status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377249 | PMC |
http://dx.doi.org/10.7717/peerj.9494 | DOI Listing |
JMIR Public Health Surveill
September 2025
Earth Observation Centre (EOC), Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.
Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.
Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.
J Proteome Res
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Department of Marine Sciences, University of Puerto Rico at Mayagüez, P.O. Box 9000, Mayagüez, PR 00681 USA.
Unlabelled: The queen snapper ( Valenciennes in Cuvier & Valenciennes, 1828) is a deep-sea snapper whose commercial importance continues to increase in the US Caribbean. However, little is known about the biology and ecology of this species. In this study, the presence of a fine-scale population structure and genetic diversity of queen snapper from Puerto Rico was assessed through 16,188 SNPs derived from the Restriction site Associated DNA Sequencing (RAD-Seq) technique.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.
Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.
View Article and Find Full Text PDFFront Genet
August 2025
College of Poultry Production and Management, TANUVAS, Hosur, India.
Background: India's indigenous sheep breeds have evolved under extreme and diverse agro-ecological pressures, yet the genomic basis of their resilience and local adaptation remains poorly understood.
Method: This study combines genomic inbreeding estimates, runs of homozygosity (ROH), population structure analyses, and composite selection scans to investigate three native Indian breeds-Changthangi, Deccani, and Garole-within a panel of nine breeds that also includes populations from Africa (Ethiopian Menz), East and South Asia (Tibetan, Chinese Merino, Bangladesh Garole, Bangladesh East), and Europe (Suffolk).
Results: ROH and heterozygosity estimates revealed strong contrasts: Bangladesh East sheep exhibited high genomic inbreeding (F≈14.