Publications by authors named "Jean Marie Lehn"

The generation of self-organized phases drives the emergence of states of matter of higher complexity. Herein, we study in situ generated self-assembled systems based on the condensation between different aldehydes and hydrazides in water. The resulting acylhydrazones can self-organize into turbid hydrogels or bigger microcrystals depending on the component substituents.

View Article and Find Full Text PDF

Dynamically adaptive materials that respond to varying environmental stimuli have garnered significant attention due to their potential applications. Nevertheless, developing single-molecule-based intrinsically adaptive materials capable of responding to multiple stimuli remains a challenge. Herein, we present an intrinsically adaptive salicylaldimine featuring a urea group, demonstrating versatile adaptations across three different stacking states in response to light, mechanical, and thermal stimuli, thus facilitating controllable switching between photochromism and photoluminescence.

View Article and Find Full Text PDF

Molecular motors can act on their environment through their unique ability to generate non-reciprocal autonomous motions at the nanoscale. Although their operating principles are now understood, artificial molecular motors have yet to demonstrate their general capacity to confer novel properties on (supra)molecular systems and materials. Here we show that amphiphilic light-driven molecular motors can adsorb onto an air‒water interface and form Langmuir monolayers upon compression.

View Article and Find Full Text PDF

The conjugation-driven stability and reactivity of bis-imine formation from the reaction of substituted aromatic aldehydes and amines bearing electron donor and acceptor groups were studied in two approaches involving aldehydes and amines with the substituents either conjugated (para position) or non-conjugated (meta position) to the reacting functional groups. The bis-imine from the reaction of a bis-amine (B) with different types of aldehydes (A) constituted an ABA module, whereas the reaction of bis-aldehydes with different amines resulted in a BAB module. The competitive reactions were also studied for a specified bis-amine (B1 or B2) in similar conditions with a mixture of different aldehydes, and the time-dependent generations of dynamic covalent libraries were followed.

View Article and Find Full Text PDF

The hypoxic microenvironment is crucial for tumour cell growth and invasiveness. Tumour tissue results from adaptation to reduced oxygen availability. Hypoxia first activates pro-angiogenic signals for alleviation.

View Article and Find Full Text PDF

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in the form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

SAr reactions were remarkably accelerated using a pretargeting and activating unit based on dynamic covalent chemistry (DCvC). A Cys attack at the C-F bond on the aromatic ring of salicylaldehyde derivatives was only observed upon iminium formation with a neighboring Lys residue of model small peptides. Such self-activation was ascribed to the stronger electron-withdrawing capability of the iminium bond with respect to that of the parent aldehyde that stabilized the transition state of the reaction, together with the higher preorganization of the reactive groups in the cationic aldiminium species.

View Article and Find Full Text PDF

Developing visible-light-driven fluorescent photoswitches in the solid state remains an enormous challenge in smart materials. Such photoswitches are obtained from salicylaldimines through excited-state intramolecular proton transfer (ESIPT) and subsequent cis-trans isomerization strategies. By incorporating a bulky naphthalimide fluorophore into a Schiff base, three photoswitches achieve dual-mode changes (both in color and fluorescence) in the solid state.

View Article and Find Full Text PDF

Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs.

View Article and Find Full Text PDF

Imination reactions in water represent a challenge not only because of the high propensity of imines to be hydrolysed but also as a result of the competing hydrate formation through HO addition to the aldehyde. In the present work we report a successful approach that allows for favouring imitation reactions while silencing hydrate formation. Such remarkable reactivity and selectivity can be attained by fine-tuning the electronic and steric structural features of the -substituents of the carbonyl groups.

View Article and Find Full Text PDF

Dynamic noncovalent and covalent chemistries have enabled the constitutional modulation of chemical entities within chemical dynamic systems. The switching between order and disorder, i.e.

View Article and Find Full Text PDF

The mechanisms through which environmental conditions affect the expression of interconnected species is a key step to comprehending the principles underlying complex chemical processes. In Nature, chemical modifications triggered by the environment have a major impact on the structure and function of biomolecules and regulate different reaction pathways. Yet, minimalistic artificial systems implementing related adaptation behaviours remain barely explored.

View Article and Find Full Text PDF

Understanding the behavior of complex chemical reaction networks and how environmental conditions can modulate their organization as well as the associated outcomes may take advantage of the design of related artificial systems. Microenvironments with defined boundaries are of particular interest for their unique properties and prebiotic significance. Dynamic covalent libraries (DCvLs) and their underlying constitutional dynamic networks (CDNs) have been shown to be appropriate for studying adaptation to several processes, including compartmentalization.

View Article and Find Full Text PDF

We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SAr systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

ConspectusSince its inception in the early 1990s, the field of supramolecular polymers (SPs) has grown into an interdisciplinary field of chemistry. It expanded from the self-assembly of molecular building blocks based on H-bonding into the realm of complex dynamic material, encompassing both supramolecular noncovalent and molecular covalent regimes. It has paved the path for a more diverse field of research into a new class of polymeric materials, coined dynamic polymers or dynamers.

View Article and Find Full Text PDF

In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells.

View Article and Find Full Text PDF

The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds.

View Article and Find Full Text PDF

Imine formation under physiological conditions represents a challenging reaction due to the strong propensity of aldimines to be hydrolyzed. Herein we disclose the remarkable effect of supramolecular multivalency on increasing imine stability. A family of reactive aldehydes was synthesized bearing supramolecularly-active sites within their structure.

View Article and Find Full Text PDF

This work reports the effect of Pd(II) as chemical effector on an acylhydrazone-based dynamic covalent library (DCL) in biphasic systems (water/chloroform). The constituents of the DCL are self-built and distributed in the two phases, two of them are lipophilic enough to play the role of a carrier agent that may transfer Pd(II) from the aqueous phase to the organic phase. Upon addition of Pd(II), the DCL of components exhibits a strong amplification of the constituent that is the most adapted to stabilize Pd(II) in chloroform as well as its agonist in water.

View Article and Find Full Text PDF

Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages.

View Article and Find Full Text PDF

In starfish, the addition of the hormone 1-methyladenine (1-MA) to immature oocytes (germinal vesicle, GV-stage) arrested at the prophase of the first meiotic division induces meiosis resumption (maturation), which makes the mature eggs able to respond to the sperm with a normal fertilization response. The optimal fertilizability achieved during the maturation process results from the exquisite structural reorganization of the actin cytoskeleton in the cortex and cytoplasm induced by the maturing hormone. In this report, we have investigated the influence of acidic and alkaline seawater on the structure of the cortical F-actin network of immature oocytes of the starfish () and its dynamic changes upon insemination.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients.

View Article and Find Full Text PDF

We report the implementation of coordination complexes containing two types of cationic moieties, i. e. pyridinium and ammonium quaternary salt, as potential inhibitors of human cholinesterase enzymes.

View Article and Find Full Text PDF

Dynamic combinatorial libraries (DCLs) display adaptive behavior, enabled by the reversible generation of their molecular constituents from building blocks, in response to external effectors, e.g., protein receptors.

View Article and Find Full Text PDF