A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Supramolecular Polymers: Inherently Dynamic Materials. | LitMetric

Supramolecular Polymers: Inherently Dynamic Materials.

Acc Chem Res

ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ConspectusSince its inception in the early 1990s, the field of supramolecular polymers (SPs) has grown into an interdisciplinary field of chemistry. It expanded from the self-assembly of molecular building blocks based on H-bonding into the realm of complex dynamic material, encompassing both supramolecular noncovalent and molecular covalent regimes. It has paved the path for a more diverse field of research into a new class of polymeric materials, coined dynamic polymers or dynamers. Dynamers are bringing a paradigm shift not only in material science research but also in a broad field of applications from self-healing materials to biocompatible polymeric materials. The present Account presents the evolution of supramolecular polymer chemistry from simple linear polymeric chains to complex dynamic polymers imparting novel functional properties, such as component exchange and self-healing. We explore how SPs led to materials of increasing complexity, starting from simple main-chain polymers to the formation of more complex columnar SPs and lateral SPs. The field has experienced three partially overlapping periods. The main goal was first the generation of polymeric entities from various molecular components connected through noncovalent interactions, especially complementary hydrogen bonding recognition patterns as well as stacked columnar SPs. Thereafter, attention was directed in parallel to the exploration of the properties of SPs and their applications as novel materials. In a third period, the dynamic properties of supramolecular polymers were explored, taking advantage of the lability of noncovalent interactions to perform component rearrangement and exchange. We illustrate how the field of SPs has emerged as a multidisciplinary field of chemistry, biology, and materials science with selected examples from the literature. The SPs, specifically dynamic owing to their inherent reversibility, also pave the path to easier sorting and recycling, as desired in the plastics industry.One of the biggest challenges that the plastics industry is facing today is the end-of-life fate of plastics. Plastics that cannot be recycled end up in landfills or are improperly disposed of in rivers and oceans, polluting and damaging the environmental balance irreversibly. Dynamic polymeric materials presenting inherent dynamicity could pave the way for addressing this long-standing challenge of nonrecyclability of plastics. Dynamers formed via noncovalent interactions or reversible covalent bonds can be broken into components that could be easily recycled and reused. Therefore, dynamers could play a pivotal role toward closing the loop for the plastics industry and provide a solution to an elusive circular economy with plastics being an integral part.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.3c00683DOI Listing

Publication Analysis

Top Keywords

supramolecular polymers
12
polymeric materials
12
noncovalent interactions
12
materials
8
sps
8
field chemistry
8
complex dynamic
8
dynamic polymers
8
columnar sps
8
plastics industry
8

Similar Publications