A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Toward in Silico Modeling of Dynamic Combinatorial Libraries. | LitMetric

Toward in Silico Modeling of Dynamic Combinatorial Libraries.

ACS Cent Sci

Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dynamic combinatorial libraries (DCLs) display adaptive behavior, enabled by the reversible generation of their molecular constituents from building blocks, in response to external effectors, e.g., protein receptors. So far, chemoinformatics has not yet been used for the design of DCLs-which comprise a radically different set of challenges compared to classical library design. Here, we propose a chemoinformatic model for theoretically assessing the composition of DCLs in the presence and the absence of an effector. An imine-based DCL in interaction with the effector human carbonic anhydrase II (CA II) served as a case study. Support vector regression models for the imine formation constants and imine-CA II binding were derived from, respectively, a set of 276 imines synthesized and experimentally studied in this work and 4350 inhibitors of CA II from ChEMBL. These models predict constants for all DCL constituents, to feed software assessing equilibrium concentrations. They are publicly available on the dedicated website. Models rationally selected two amines and two aldehydes predicted to yield stable imines with high affinity for CA II and provided a virtual illustration on how effector affinity regulates DCL members.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228562PMC
http://dx.doi.org/10.1021/acscentsci.2c00048DOI Listing

Publication Analysis

Top Keywords

dynamic combinatorial
8
combinatorial libraries
8
silico modeling
4
modeling dynamic
4
libraries dynamic
4
libraries dcls
4
dcls display
4
display adaptive
4
adaptive behavior
4
behavior enabled
4

Similar Publications