Space Sci Rev
October 2024
Saturn's moon Titan was explored by the Cassini spacecraft from 2004 to 2017. While Cassini revealed a lot about this Earth-like world, its radar observations could only provide limited information about Titan's liquid hydrocarbons seas Kraken, Ligeia and Punga Mare. Here, we show the results of the analysis of the Cassini mission bistatic radar experiments data of Titan's polar seas.
View Article and Find Full Text PDFThe shorelines of Titan's hydrocarbon seas trace flooded erosional landforms such as river valleys; however, it is unclear whether coastal erosion has subsequently altered these shorelines. Spacecraft observations and theoretical models suggest that wind may cause waves to form on Titan's seas, potentially driving coastal erosion, but the observational evidence of waves is indirect, and the processes affecting shoreline evolution on Titan remain unknown. No widely accepted framework exists for using shoreline morphology to quantitatively discern coastal erosion mechanisms, even on Earth, where the dominant mechanisms are known.
View Article and Find Full Text PDFGrowing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 μM concentration in a compact system.
View Article and Find Full Text PDFAlluvial rivers are conveyor belts of fluid and sediment that provide a record of upstream climate and erosion on Earth, Titan, and Mars. However, many of Earth's rivers remain unsurveyed, Titan's rivers are not well resolved by current spacecraft data, and Mars' rivers are no longer active, hindering reconstructions of planetary surface conditions. To overcome these problems, we use dimensionless hydraulic geometry relations-scaling laws that relate river channel dimensions to flow and sediment transport rates-to calculate in-channel conditions using only remote sensing measurements of channel width and slope.
View Article and Find Full Text PDFACS Earth Space Chem
February 2023
Saturn's moon, Titan, has a hydrocarbon-based hydrologic cycle with methane and ethane rainfall. Because of Titan's low gravity, "floating liquid droplets" (coherent droplets of liquid hydrocarbons that float upon a liquid surface) may form on the surface of Titan's hydrocarbon lakes and seas during rainfall. Floating liquid droplets, however, have not been investigated in the laboratory under conditions appropriate for the surface of Titan (cryogenic, hydrocarbon, liquids).
View Article and Find Full Text PDFWe use gravity data from NASA's GRAIL mission to characterize the porosity structure of the upper lunar crust. We analyze the gravitational anomalies produced by the porosity of craters with diameters between 10 and 30 km. We find that the gravitational signature of craters changes significantly at km, which is related to a discrete change in porosity at a depth ∼3-5 km.
View Article and Find Full Text PDFSaturn's moon Titan is the only extraterrestrial body known to host stable lakes and a hydrological cycle. Titan's lakes predominantly contain liquid methane, ethane, and nitrogen, with methane evaporation driving its hydrological cycle. Molecular interactions between these three species lead to non-ideal behavior that causes Titan's lakes to behave differently than Earth's lakes.
View Article and Find Full Text PDFAstrobiology
January 2019
In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to "identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find.
View Article and Find Full Text PDFScience
October 2016
Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse.
View Article and Find Full Text PDFThe Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.
View Article and Find Full Text PDFObservations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest.
View Article and Find Full Text PDF/VIMS high-phase specular observations of Titan's north pole during the T85 flyby show evidence for isolated patches of rough liquid surface within the boundaries of the sea Punga Mare. The roughness shows typical slopes of 6°±1°. These rough areas could be either wet mudflats or a wavy sea.
View Article and Find Full Text PDF