Real-time monitoring of neurotransmitters is essential in driving basic neuroscience understandings and creating treatments for various brain disorders. However, current neurotransmitter sensing devices are highly limited in their spatiotemporal resolution and ability to integrate with neuronal recording. Here, we introduce a unique carbon coating approach to achieve high-performance voltammetry electrodes with extraordinary scalability and interoperability.
View Article and Find Full Text PDFChronic visceral pain management remains challenging due to limitations in selective targeting of C-fiber nociceptors. This study investigates temporal interference stimulation (TIS) on dorsal root ganglia (DRG) as a novel approach for selective C-fiber transmission block. We employed (1) GCaMP6 recordings in mouse whole DRG using a flexible, transparent microelectrode array for visualizing L6 DRG neuron activation, (2) ex vivo single-fiber recordings to assess sinusoidal stimulation effects on peripheral nerve axons, (3) in vivo behavioral assessment measuring visceromotor responses (VMR) to colorectal distension in mice, including a TNBS-induced visceral hypersensitivity model, and (4) immunohistological analysis to evaluate immediate immune responses in DRG following TIS.
View Article and Find Full Text PDFAdv Mater
September 2024
Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing.
View Article and Find Full Text PDFBiosens Bioelectron
October 2024
Electroplating of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is important in many neuroelectronic applications but is challenging to achieve uniformity on large-scale microelectrode arrays (MEA) using conventional galvanostatic methods. In this study, we address this challenge through a potentiostatic method and demonstrate highly uniform electroplating of PEDOT:PSS on MEA with more than one hundred electrodes, all at cellular sizes. The validation of this approach involves comparisons with galvanostatic deposition methods, showcasing unparalleled deposition yield and uniformity.
View Article and Find Full Text PDFTechniques to study brain activities have evolved dramatically, yet tremendous challenges remain in acquiring high-throughput electrophysiological recordings minimally invasively. Here, we develop an integrated neuroelectronic array that is filamentary, high-density and flexible. Specifically, with a design of single-transistor multiplexing and current sensing, the total 256 neuroelectrodes achieve only a 2.
View Article and Find Full Text PDFTech Dig Int Electron Devices Meet
December 2022
Transparent electrode arrays have emerged as promising platforms for neural interfacing by enabling simultaneous electrophysiological recording and optical measurements. Soft and thin devices also have compelling advantages due to their less mechanical mismatch with the brain tissue. Here we demonstrate a bilayer-nanomesh-based transparent microelectrode array (MEA) on ultrathin Polydimethylsiloxane (PDMS) substrate.
View Article and Find Full Text PDF