Publications by authors named "Isabelle Henry"

Circular minichromosomes could be useful tools for plant biotechnology, yet their long-term structural stability, heritability, and effects on phenotype remain poorly understood. In this study, we report a multi-generational analysis of the Arabidopsis mini1a ring minichromosome, which originated from the chromosome 1 centromere in a haploid induction cross. Is mini1a unstable, as suggested by classical studies on other ring chromosomes? Using whole-genome sequencing of individuals carrying mini1a representing multiple successive generations, we uncovered a major catastrophe driven by DNA breaks and novel junction formation, resulting in a new version of mini1a, that carries a 1.

View Article and Find Full Text PDF

Objectives: Mint oil is used in various commercial applications world-wide. Mint oil is typically harvested from commercial clones of peppermint or spearmints. Spearmints are the product of a cross between two diploid species: Mentha longifolia (horse mint) and Mentha suaveolens (apple mint).

View Article and Find Full Text PDF

The calmodulin-binding transcription activator (CAMTA) family contributes to stress responses in many plant species. The Oryza sativa ssp. japonica genome harbors seven CAMTA genes; however, intraspecific variation and functional roles of this gene family have not been determined.

View Article and Find Full Text PDF

The genetic control of many plant traits can be highly complex. Both allelic variation (sequence change) and dosage variation (copy number change) contribute to a plant's phenotype. While numerous studies have investigated the effect of allelic or dosage variation, very few have documented both within the same system, leaving their relative contribution to phenotypic effects unclear.

View Article and Find Full Text PDF

Introduction: Owing to advances in high-throughput genome sequencing, QTL-Seq mapping of salt tolerance traits is a major platform for identifying soil-salinity tolerance QTLs to accelerate marker-assisted selection for salt-tolerant rice varieties. We performed QTL-BSA-Seq in the seedling stage of rice from a genetic cross of the extreme salt-sensitive variety, IR29, and "Jao Khao" (JK), a Thai salt-tolerant variety.

Methods: A total of 462 F progeny grown in soil and treated with 160 mM NaCl were used as the QTL mapping population.

View Article and Find Full Text PDF

High-throughput sequencing-based methods for bulked segregant analysis (BSA) allow for the rapid identification of genetic markers associated with traits of interest. BSA studies have successfully identified qualitative (binary) and quantitative trait loci (QTLs) using QTL mapping. However, most require population structures that fit the models available and a reference genome.

View Article and Find Full Text PDF

The chromosome axis plays a crucial role in meiotic recombination. Here, we study the function of ASY1, the Arabidopsis homolog of the yeast chromosome axis-associated component Hop1. Specifically, we characterized cross-over (CO) distribution in female and male meiosis by deep sequencing of the progeny of an allelic series of mutants.

View Article and Find Full Text PDF

Sex chromosome evolution is thought to be tightly associated with the acquisition and maintenance of sexual dimorphisms. Plant sex chromosomes have evolved independently in many lineages and can provide a powerful comparative framework to study this. We assembled and annotated genome sequences of three kiwifruit species (genus Actinidia) and uncovered recurrent sex chromosome turnovers in multiple lineages.

View Article and Find Full Text PDF

Chromoanagenesis is a single catastrophic event that involves, in most cases, localized chromosomal shattering and reorganization, resulting in a dramatically restructured chromosome. First discovered in cancer cells, it has since been observed in various other systems, including plants. In this review, we discuss the origin, characteristics, and potential mechanisms underlying chromoanagenesis in plants.

View Article and Find Full Text PDF

Unlabelled: Chromoanagenesis is a catastrophic event that involves localized chromosomal shattering and reorganization. In this study, we report a case of chromoanagenesis resulting from defective meiosis in the MEIOTIC ASYNAPTIC MUTANT 1 (asy1) background in Arabidopsis thaliana. We provide a detailed characterization of the genomic structure of this individual with a severely shattered segment of chromosome 1.

View Article and Find Full Text PDF

In flowering plants, different lineages have independently transitioned from the ancestral hermaphroditic state into and out of various sexual systems. Polyploidizations are often associated with this plasticity in sexual systems. Persimmons (the genus Diospyros) have evolved dioecy via lineage-specific palaeoploidizations.

View Article and Find Full Text PDF

Mint oil is a key source of natural flavors with wide industrial applications. Two unbalanced polyploid cultivars named Native (Mentha Spicata L) and Scotch (M. × gracilis Sole) are the main producers of spearmint type oil, which is characterized by high levels of the monoterpenes (-)-carvone and (-)-limonene.

View Article and Find Full Text PDF

Large-scale structural variations, such as chromosomal translocations, can have profound effects on fitness and phenotype, but are difficult to identify and characterize. Here, we describe a simple and effective method aimed at identifying translocations using only the dosage of sequence reads mapped on the reference genome. We binned reads on genomic segments sized according to sequencing coverage and identified instances when copy number segregated in populations.

View Article and Find Full Text PDF

The sustainability of many crops is hindered by the lack of genomic resources and a poor understanding of natural genetic diversity. Particularly, application of modern breeding requires high-density linkage maps that are integrated into a highly contiguous reference genome. Here, we present a rapid method for deriving haplotypes and developing linkage maps, and its application to Mentha suaveolens, one of the diploid progenitors of cultivated mints.

View Article and Find Full Text PDF

During secondary growth, forest trees can modify the anatomy of the wood produced by the vascular cambium in response to environmental conditions. Notably, the trees of the model angiosperm genus, , reduce the risk of cavitation and hydraulic failure under water stress by producing water-conducting vessel elements with narrow lumens, which are more numerous and more interconnected with each other. Here, we determined the genetic architecture of vessel traits affecting hydraulic physiology and resilience to water stress.

View Article and Find Full Text PDF

Chromoanagenesis is a genomic catastrophe that results in chromosomal shattering and reassembly. These extreme single chromosome events were first identified in cancer, and have since been observed in other systems, but have so far only been formally documented in plants in the context of haploid induction crosses. The frequency, origins, consequences, and evolutionary impact of such major chromosomal remodeling in other situations remain obscure.

View Article and Find Full Text PDF

Background: Imaging, in radiotherapy, has become a routine tool for repositioning of the target volume at each session. The repositioning precision, currently infracentimetric, evolves along with the irradiation techniques. This retrospective study aimed to identify practices and doses resulting from the use of high energy planar imaging (portal imaging) in daily practice.

View Article and Find Full Text PDF

Gene copy number variation is frequent in plant genomes of various species, but the impact of such gene dosage variation on morphological traits is poorly understood. We used a large population of Populus carrying genomically characterized insertions and deletions across the genome to systematically assay the effect of gene dosage variation on a suite of leaf morphology traits. A systems genetics approach was used to integrate insertion and deletion locations, leaf morphology phenotypes, gene expression, and transcriptional network data, to provide an overview of how gene dosage influences morphology.

View Article and Find Full Text PDF

In cultivated tetraploid potato (Solanum tuberosum), reduction to diploidy (dihaploidy) allows for hybridization to diploids and introgression breeding and may facilitate the production of inbreds. Pollination with haploid inducers (HIs) yields maternal dihaploids, as well as triploid and tetraploid hybrids. Dihaploids may result from parthenogenesis, entailing the development of embryos from unfertilized eggs, or genome elimination, entailing missegregation and the loss of paternal chromosomes.

View Article and Find Full Text PDF

Animals produce vibrations or noises by means of body movements, which can play a role in communication. These behaviors enhance signal transmission or receiver attention and could be specifically used during turn-taking phases of a reciprocal exchange of signals. In the barn owl , nestlings vocalize one after the other to negotiate which individual will have priority access to the impending prey item to be delivered by the parents.

View Article and Find Full Text PDF

Sexuality is one of the fundamental mechanisms that work towards maintaining genetic diversity within a species. In diploid persimmons (Diospyros spp.), separated sexuality, the presence of separate male and female individuals (dioecy), is controlled by the Y chromosome-encoded small-RNA gene, OGI.

View Article and Find Full Text PDF

Most angiosperms bear hermaphroditic flowers, but a few species have evolved outcrossing strategies, such as dioecy, the presence of separate male and female individuals. We previously investigated the mechanisms underlying dioecy in diploid persimmon (D. lotus) and found that male flowers are specified by repression of the autosomal gene MeGI by its paralog, the Y-encoded pseudo-gene OGI.

View Article and Find Full Text PDF