A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A systems genetics approach to deciphering the effect of dosage variation on leaf morphology in Populus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gene copy number variation is frequent in plant genomes of various species, but the impact of such gene dosage variation on morphological traits is poorly understood. We used a large population of Populus carrying genomically characterized insertions and deletions across the genome to systematically assay the effect of gene dosage variation on a suite of leaf morphology traits. A systems genetics approach was used to integrate insertion and deletion locations, leaf morphology phenotypes, gene expression, and transcriptional network data, to provide an overview of how gene dosage influences morphology. Dosage-sensitive genomic regions were identified that influenced individual or pleiotropic morphological traits. We also identified cis-expression quantitative trait loci (QTL) within these dosage QTL regions, a subset of which modulated trans-expression QTL as well. Integration of data types within a gene co-expression framework identified co-expressed gene modules that are dosage sensitive, enriched for dosage expression QTL, and associated with morphological traits. Functional description of these modules linked dosage-sensitive morphological variation to specific cellular processes, as well as candidate regulatory genes. Together, these results show that gene dosage variation can influence morphological variation through complex changes in gene expression, and suggest that frequently occurring gene dosage variation has the potential to likewise influence quantitative traits in nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226299PMC
http://dx.doi.org/10.1093/plcell/koaa016DOI Listing

Publication Analysis

Top Keywords

dosage variation
20
gene dosage
20
leaf morphology
12
morphological traits
12
gene
10
dosage
9
systems genetics
8
genetics approach
8
variation
8
gene expression
8

Similar Publications