Publications by authors named "Isabelle Draper"

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) is a common heart problem, but scientists don't completely understand why it happens.
  • A specific splicing factor called hnRNPL gets more active in the hearts of mice and people with heart failure.
  • Researchers found that hnRNPL helps control how certain proteins are made in heart cells, and problems with it could contribute to heart failure.
View Article and Find Full Text PDF

Introduction/aims: Heterogeneous nuclear ribonucleoprotein A1 is involved in nucleic acid homeostatic functions. The encoding gene HNRNPA1 has been associated with several neuromuscular disorders including an amyotrophic lateral sclerosis-like phenotype, distal hereditary motor neuropathy, multisystem proteinopathy, and various myopathies. We report two unrelated individuals with monoallelic stop loss variants affecting the same codon of HNRNPA1.

View Article and Find Full Text PDF

Pathogenic variants in were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

We show that a sleep-regulating, Ig-domain protein (NKT) is secreted from mushroom body (MB) α'/β' neurons to act locally on other MB cell types. Pan-neuronal or broad MB expression of membrane-tethered NKT (tNkt) protein reduced sleep, like that of an NKT null mutant, suggesting blockade of a receptor mediating endogenous NKT action. In contrast, expression in neurons requiring NKT (the MB α'/β' cells), or non-MB sleep-regulating centers, did not reduce night sleep, indicating the presence of a local MB sleep-regulating circuit consisting of communicating neural subtypes.

View Article and Find Full Text PDF

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a conserved RNA binding protein (RBP) that plays an important role in the alternative splicing of gene transcripts, and thus in the generation of specific protein isoforms. Global deficiency in hnRNPL in mice results in preimplantation embryonic lethality at embryonic day (E) 3.5.

View Article and Find Full Text PDF

DTNA encodes α-dystrobrevin, a component of the macromolecular dystrophin-glycoprotein complex (DGC) that binds to dystrophin/utrophin and α-syntrophin. Mice lacking α-dystrobrevin have a muscular dystrophy phenotype, but variants in DTNA have not previously been associated with human skeletal muscle disease. We present 12 individuals from four unrelated families with two different monoallelic DTNA variants affecting the coiled-coil domain of α-dystrobrevin.

View Article and Find Full Text PDF

The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases.

View Article and Find Full Text PDF

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families.

View Article and Find Full Text PDF

Introduction: RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1.

View Article and Find Full Text PDF

Biallelic loss-of-function MEGF10 mutations lead to MEGF10 myopathy, also known as early onset myopathy with areflexia, respiratory distress, and dysphagia (EMARDD). MEGF10 is expressed in muscle satellite cells, but the contribution of satellite cell dysfunction to MEGF10 myopathy is unclear. Myofibers and satellite cells were isolated and examined from Megf10 and wild-type mice.

View Article and Find Full Text PDF

MEGF10 myopathy is a rare inherited muscle disease that is named after the causative gene, MEGF10. The classic phenotype, early onset myopathy, areflexia, respiratory distress and dysphagia, is severe and immediately life-threatening. There are no disease-modifying therapies.

View Article and Find Full Text PDF

Recessive mutations in multiple epidermal growth factor-like domains 10 (MEGF10) underlie a rare congenital muscle disease known as MEGF10 myopathy. MEGF10 and its Drosophila homolog Draper (Drpr) are transmembrane receptors expressed in muscle and glia. Drpr deficiency is known to result in muscle abnormalities in flies.

View Article and Find Full Text PDF

Background: Pathogenic mutations causing aberrant splicing are often difficult to detect. Standard variant analysis of next-generation sequence (NGS) data focuses on canonical splice sites. Noncanonical splice sites are more difficult to ascertain.

View Article and Find Full Text PDF

Next-generation sequencing is commonly used to screen for pathogenic mutations in families with Mendelian disorders, but due to the pace of discoveries, gaps have widened for some diseases between genetic and pathophysiological knowledge. We recruited and analyzed 16 families with limb-girdle muscular dystrophy (LGMD) of Arab descent from Saudi Arabia and Sudan who did not have confirmed genetic diagnoses. The analysis included both traditional and next-generation sequencing approaches.

View Article and Find Full Text PDF
Article Synopsis
  • Gene expression in tissues is influenced by epigenetic, transcriptional, and post-transcriptional processes that determine cellular identity through protein production.
  • A study identified DDX27, a DEAD-Box RNA helicase, as essential for growth and regeneration in skeletal muscle, suggesting its role in myogenesis.
  • DDX27 is crucial for the maturation of ribosomal RNA, impacting ribosome biogenesis and the translation of specific genes in muscle development.
View Article and Find Full Text PDF

Mutations in MEGF10 cause early onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD), a rare congenital muscle disease, but the pathogenic mechanisms remain largely unknown. We demonstrate that short hairpin RNA (shRNA)-mediated knockdown of Megf10, as well as overexpression of the pathogenic human p.C774R mutation, leads to impaired proliferation and migration of C2C12 cells.

View Article and Find Full Text PDF

Background: Insect metamorphosis relies on temporal and spatial cues that are precisely controlled. Previous studies in Drosophila have shown that untimely activation of genes that are essential to metamorphosis results in growth defects, developmental delay and death. Multiple factors exist that safeguard these genes against dysregulated expression.

View Article and Find Full Text PDF

Bursicon is a hormone that modulates wing expansion, cuticle hardening and melanization in Drosophila melanogaster. Bursicon activity is mediated through its cognate G protein-coupled receptor (GPCR), rickets. We have developed a membrane-tethered bursicon construct that enables spatial modulation of rickets-mediated physiology in transgenic flies.

View Article and Find Full Text PDF

Mutations in the gene encoding the single transmembrane receptor multiple epidermal growth factor-like domain 10 (MEGF10) cause an autosomal recessive congenital muscle disease in humans. Although mammalian MEGF10 is expressed in the central nervous system as well as in skeletal muscle, patients carrying mutations in MEGF10 do not show symptoms of central nervous system dysfunction. drpr is the sole Drosophila homolog of the human genes MEGF10, MEGF11, and MEGF12 (JEDI, PEAR).

View Article and Find Full Text PDF

Background: Incomplete penetrance and variable expression of hypertrophic cardiomyopathy (HCM) is well appreciated. Common genetic polymorphisms variants that may affect HCM penetrance and expression have been predicted but are not well established.

Methods And Results: We performed a case-control genomewide association study to identify common HCM-associated genetic polymorphisms and then asked whether such common variants were more represented in HCM or could explain the heterogeneity of HCM phenotypes.

View Article and Find Full Text PDF

The Drosophila smooth gene encodes an RNA binding protein that has been well conserved through evolution. To investigate the pleiotropic functions mediated by the smooth gene, we have selected and characterized two sm mutants, which are viable as adults yet display robust phenotypes (including a significant decrease in lifespan). Utilizing these mutants, we have made the novel observation that disruption of the smooth/CG9218 locus leads to age-dependent muscle degeneration, and motor dysfunction.

View Article and Find Full Text PDF