Am J Physiol Heart Circ Physiol
January 2019
Myocardial hypertrophy is an independent risk factor for heart failure (HF), yet the mechanisms underlying pathological cardiomyocyte growth are incompletely understood. The c-Jun NH-terminal kinase (JNK) signaling cascade modulates cardiac hypertrophic remodeling, but the upstream factors regulating myocardial JNK activity remain unclear. In this study, we sought to identify JNK-activating molecules as novel regulators of cardiac remodeling in HF.
View Article and Find Full Text PDFIn patients hospitalized with acute heart failure, temporary serelaxin infusion reduced 6-month mortality through unknown mechanisms. This study therefore explored the cardiovascular effects of temporary serelaxin administration in mice subjected to the angiotensin II (AngII)/L-NG-nitroarginine methyl ester (L-NAME) heart failure model, both during serelaxin infusion and 19 days post-serelaxin infusion. Serelaxin administration did not alter AngII/L-NAME-induced cardiac hypertrophy, geometry, or dysfunction.
View Article and Find Full Text PDFBackground: Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD.
View Article and Find Full Text PDFBackground: Pharmacological activation of cGMP-dependent protein kinase G I (PKGI) has emerged as a therapeutic strategy for humans with heart failure. However, PKG-activating drugs have been limited by hypotension arising from PKG-induced vasodilation. PKGIα antiremodeling substrates specific to the myocardium might provide targets to circumvent this limitation, but currently remain poorly understood.
View Article and Find Full Text PDFReactive oxygen species (ROS) are elevated in the heart in response to hemodynamic and metabolic stress and promote hypertrophic signaling. ROS also mediate the formation of lipid peroxidation-derived aldehydes that may promote myocardial hypertrophy. One lipid peroxidation by-product, 4-hydroxy-trans-2-nonenal (HNE), is a reactive aldehyde that covalently modifies proteins thereby altering their function.
View Article and Find Full Text PDFOxidative stress is pathogenic in a variety of diseases, but the mechanism by which cellular signaling is affected by oxidative species has yet to be fully characterized. Lipid peroxidation, a secondary process that occurs during instances of free radical production, may play an important role in modulating cellular signaling under conditions of oxidative stress. 4-Hydroxy-trans-2-nonenal (HNE) is an electrophilic aldehyde produced during lipid peroxidation that forms covalent adducts on proteins, altering their activity and function.
View Article and Find Full Text PDFAntioxid Redox Signal
December 2012
Significance: Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential.
View Article and Find Full Text PDFBackground: Diet-induced obesity is associated with metabolic heart disease characterized by left ventricular hypertrophy and diastolic dysfunction. Polyphenols such as resveratrol and the synthetic flavonoid derivative S17834 exert beneficial systemic and cardiovascular effects in a variety of settings including diabetes mellitus and chronic hemodynamic overload.
Methods And Results: We characterized the structural and functional features of a mouse model of diet-induced metabolic syndrome and used the model to test the hypothesis that the polyphenols prevent myocardial hypertrophy and diastolic dysfunction.