A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Diet-induced obesity is associated with metabolic heart disease characterized by left ventricular hypertrophy and diastolic dysfunction. Polyphenols such as resveratrol and the synthetic flavonoid derivative S17834 exert beneficial systemic and cardiovascular effects in a variety of settings including diabetes mellitus and chronic hemodynamic overload.

Methods And Results: We characterized the structural and functional features of a mouse model of diet-induced metabolic syndrome and used the model to test the hypothesis that the polyphenols prevent myocardial hypertrophy and diastolic dysfunction. Male C57BL/6J mice were fed a normal diet or a diet high in fat and sugar (HFHS) with or without concomitant treatment with S17834 or resveratrol for up to 8 months. HFHS diet-fed mice developed progressive left ventricular hypertrophy and diastolic dysfunction with preservation of systolic function in association with myocyte hypertrophy and interstitial fibrosis. In HFHS diet-fed mice, there was increased myocardial oxidative stress with evidence of oxidant-mediated protein modification via tyrosine nitration and 4-OH-2-nonenol adduction. HFHS diet-fed mice also exhibited increases in plasma fasting glucose, insulin, and homeostasis model assessment of insulin resistance indicative of insulin resistance. Treatment with S17834 or resveratrol prevented left ventricular hypertrophy and diastolic dysfunction. For S17834, these beneficial effects were associated with decreases in oxidant-mediated protein modifications and hyperinsulinemia and increased plasma adiponectin.

Conclusions: Resveratrol and S17834 administered concurrently with a HFHS diet prevent the development of left ventricular hypertrophy, interstitial fibrosis, and diastolic dysfunction. Multiple mechanisms may contribute to the beneficial effects of the polyphenols, including a reduction in myocardial oxidative stress and related protein modifications, amelioration of insulin resistance, and increased plasma adiponectin. The polyphenols resveratrol and S17834 may be of value in the prevention of diet-induced metabolic heart disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354628PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.067801DOI Listing

Publication Analysis

Top Keywords

diastolic dysfunction
20
left ventricular
16
ventricular hypertrophy
16
hypertrophy diastolic
16
polyphenols resveratrol
12
resveratrol s17834
12
diet-induced metabolic
12
metabolic heart
12
heart disease
12
hfhs diet-fed
12

Similar Publications