Silicon (Si) is a promising next-generation anode material for lithium-ion batteries (LIBs) due to its exceptionally high theoretical capacity (3579 mAh g) and natural abundance. However, its commercialization remains challenging due to severe volume expansion (~300%) during cycling, leading to poor structural stability and rapid capacity degradation. To address this issue, we developed a novel biomass-derived binder system denoted as SCC, composed of sodium alginate (SA) and chondroitin sulfate (CS), crosslinked via a simple calcium chloride (CaCl₂) aqueous treatment.
View Article and Find Full Text PDFIn this study, a selenium-doped sulfurized polyacrylonitrile (Se-SPAN) cathode fabricated by a dry process with multi-walled carbon nanotubes (MWCNT) and a polytetrafluoroethylene (PTFE) binder is proposed to address issues in currently developed dry-processed cathodes. The dry-processed Se-SPAN (D/Se-SPAN) is characterized by a dense, robust, and uniform structure that successfully resists the internal stress evolution caused by significant volume variations of the Se-SPAN under high-loading conditions. Understanding these architectural advantages in D/Se-SPAN, the unrivaled potential of D/Se-SPAN compared with traditional slurry-processed Se-SPAN cathodes (S/Se-SPAN) is established through a series of in-depth electrochemical-mechanical investigations.
View Article and Find Full Text PDFNanocellulose has garnered attention in energy storage as an environmentally friendly and stable separator for lithium-ion batteries (LIBs). However, cellulose nanofibers (CNF) form a dense network that impedes Li-ion migration and limits electrolyte uptake. To develop an efficient LIB separator, polyethylene glycol (PEG) was incorporated with CNF to promote hydrogen bonding, leading to a stable PEG/CNF composite that enhances ionic conductivity.
View Article and Find Full Text PDFUnderstanding the temporal evolution of particle distribution during the drying of colloidal films is essential for advancing the design and optimization of film properties. This study investigates the dynamics of colloidal particles during vertical drying using the lattice Boltzmann method. Simulation results reveal that the particle distribution during drying and the resulting film microstructure are governed by two key dimensionless numbers: the drying Péclet number (Pe) and the sedimentation Péclet number (Pe).
View Article and Find Full Text PDFThis study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming PEG-SN hydrogels using poly(ethylene glycol) diacrylate (PEGDA) through UV-induced free radical polymerization and crosslinking reactions, then immersing them in PAA solutions with two different molar ratios of acrylic acid (AA) monomer and poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinker.
View Article and Find Full Text PDFThe coffee-ring structure, which is the final drying pattern of a sessile suspension droplet, is a key factor in controlling the uniformity of the particulate deposits in various coatings. Two light-scattering methods, diffusing wave spectroscopy (DWS) and multispeckle DWS (MSDWS), were used to quantitatively distinguish temporal changes in particle mobility in evaporating suspension droplets containing micrometer-sized silica and polystyrene (PS) particles. The characteristic particle mobility was measured in terms of the mean square displacement in the early stage of drying, and the local particle dynamics around the edge and center regimes of the droplets during drying were analyzed using MSDWS.
View Article and Find Full Text PDFTransparent conductive films (TCFs) were fabricated through bar-coating with a water-in-toluene emulsion containing Ag nanoparticles (AgNPs). Morphological changes in the self-assembled TCF networks under different emulsion formulations and coating conditions and the corresponding optoelectrical properties were investigated. In preparing various emulsions, the concentration of AgNPs and the water weight fraction were important factors for determining the size of the water droplets, which plays a decisive role in controlling the optoelectrical properties of the TCFs affected by open cells and conductive lines.
View Article and Find Full Text PDFRecently, we reported that device performance degradation mechanisms, which are generated by the γ-ray irradiation in GaN-based metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs), use extremely thin gate insulators. When the γ-ray was radiated, the total ionizing dose (TID) effects were generated and the device performance deteriorated. In this work, we investigated the device property alteration and its mechanisms, which were caused by the proton irradiation in GaN-based MIS-HEMTs for the 5 nm-thick SiN and HfO gate insulator.
View Article and Find Full Text PDFJ Agric Food Chem
November 2022
In this study, we evaluated the effects of several metabolic engineering strategies in a systematic and combinatorial manner to enhance the free fatty acid (FFA) production in . The strategies included (i) overexpression of mutant thioesterase I ('TesA) to efficiently release the FFAs from fatty acyl-ACP; (ii) coexpression of global regulatory protein FadR; (iii) heterologous expression of methylmalonyl-CoA carboxyltransferase and phosphoenolpyruvate carboxylase to synthesize fatty acid precursor molecule malonyl-CoA; and (iv) disruption of genes associated with membrane proteins (GusC, MdlA, and EnvR) to improve the cellular state and export the FFAs outside the cell. The synergistic effects of these genetic modifications in strain SBF50 yielded 7.
View Article and Find Full Text PDFBased on pilot-scale twin-screw reactive extrusion, the structural and rheological properties of controlled-rheology polypropylenes (CR-PPs) are investigated, where the effects of peroxide content and extrusion conditions such as screw configuration, extrusion temperature, and screw speed are prioritized. The active chain cleavage reaction by a small peroxide content of less than 600 ppm inside the extruder gradually increases the melt index and narrows the molecular weight distribution of CR-PPs, thereby affording favorable properties that are applicable to the fiber spinning process. The mechanical properties of CR-PPs are slightly degraded owing to the generation of unsaturated chain ends during the reactive extrusion, which suppresses crystal growth.
View Article and Find Full Text PDFSize stratification of bidisperse colloidal mixtures during vertical drying was investigated using the implicit solvent Langevin dynamics (LD) simulation and the explicit solvent lattice Boltzmann (LB) method. Simulations were performed for the Péclet number () over a wide range of 1-1000. In the case of a low size ratio of 2, mild stratification was observed in both simulation methods, in contrast to distinct stratification with thick "small-on-top" or "large-on-top" layers.
View Article and Find Full Text PDFTriboelectric nanogenerators (TENGs), a newly developed energy harvesting device that converts surrounding environmental mechanical stimuli into electricity, have been significantly explored as an ideal long-term power source for electrical devices. Despite recent advances, the development of advanced TENG devices with sufficient outputs to sustainably power electronic devices and rapid self-healability under mild conditions to improve their lifetime and function is highly demanded. Here, we report a robust self-healable and reprocessable TENG fabricated with a covalent adaptive network based on mechanically strong fluorinated poly(hindered urea) (F-PHU) integrated with ionic liquid as an efficient dielectric material to improve its triboelectric efficiency and self-healing capability simultaneously.
View Article and Find Full Text PDFThe enhancement of the structural stability of conversion-based metal sulfides at high current densities remains a major challenge in realizing the practical application of sodium-ion batteries (SIBs). The instability of metal sulfides is caused by the large volume variation and sluggish reaction kinetics upon sodiation/desodiation. To overcome this, herein, a heterostructured nanocube anode composed of CuS/FeS embedded in nitrogen-doped carbon (CuS/FeS @NC) is synthesized.
View Article and Find Full Text PDFWhile two-dimensional (2D) hexagonal boron nitride (h-BN) is emerging as an atomically thin and dangling bond-free insulating layer for next-generation electronics and optoelectronics, its practical implementation into miniaturized integrated circuits has been significantly limited due to difficulties in large-scale growth directly on epitaxial semiconductor wafers. Herein, the realization of a wafer-scale h-BN van der Waals heterostructure with a 2 in. AlGaN/GaN high-electron mobility transistor (HEMT) wafer using metal-organic chemical vapor deposition is presented.
View Article and Find Full Text PDFSilica nanoparticles (G-SiNPs) blocked with 3-glycidoxypropyl trimethoxysilane (GPTS) were newly applied to hydrogel films for improving film coating properties and to distribute the epoxy groups on the film surface. The effects of the content of epoxy-functionalized G-SiNPs on the crosslinking features by photo-induced radical polymerization and the surface mechanical properties of the hydrogel films containing poly(ethylene glycol) dimethacrylate (PEGDMA) and glycidyl methacrylate (GMA) were investigated. The real-time elastic modulus of various PEG hydrogel mixtures with prepared particles was monitored using a rotational rheometer.
View Article and Find Full Text PDFPolypropylene (PP) has poor oxygen barrier properties, therefore it is manufactured in a multi-layer structure with other plastics and metals, and has been widely used as a packaging material in various industries from food and beverage to pharmaceuticals. However, multi-layered packaging materials are generally low in recyclability and cause serious environmental pollution, therefore we have faced the challenge of improving the oxygen barrier performance as a uni-material. In this work, PP/nanoclay nanocomposites were prepared at nanoclay contents ranging from 0.
View Article and Find Full Text PDFIn this study, whole-cell biotransformation was conducted to produce nonanedioic acid from nonanoic acid by expressing the alkane hydroxylating system (AlkBGT) from Pseudomonas putida GPo1 in Escherichia coli. Following adaptive laboratory evolution, an efficient E. coli mutant strain, designated as MRE, was successfully obtained, demonstrating the fastest growth (27-fold higher) on nonanoic acid as the sole carbon source compared to the wild-type strain.
View Article and Find Full Text PDFThe draw resonance instability of viscoelastic Giesekus fluids was studied by correlating the spinline extensional features and transit times of several kinematic waves in an isothermal melt spinning process. The critical drawdown ratios were critically dependent on the Deborah number (, the ratio of material relaxation time to process time) and a single material parameter (αG) of the Giesekus fluid. In the intermediate range of αG, the stability status changed distinctively with increasing , i.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2020
The device performance deterioration mechanism caused by the total ionizing dose effect after the γ-ray irradiation was investigated in GaN-based metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) for a 5 nm-thick SiN and HfO gate dielectric layer. The γ-ray radiation hardness according to the gate dielectric layer was also compared between the two different GaN-based MIS-HEMTs. Although HfO has exhibited strong tolerance to the total ionizing dose effect in Si-based devices, there is no detail report of the γ-ray radiation effects in GaN-based MIS-HEMTs employing a HfO gate dielectric layer.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2020
An enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron- mobility-transistor was fabricated using a recess gate and CF plasma treatment to investigate its reliable applicability to high-power devices and circuits. The fluorinated-gate device showed hysteresis during the DC current-voltage measurement, and the polarity and magnitude of hysteresis depend on the drain voltage. The hysteresis phenomenon is due to the electron trapping at the AlO/AlGaN interface and charging times longer than milliseconds were obtained by pulse I-V measurement.
View Article and Find Full Text PDFSince the plastic-based multilayer films applied to food packaging are not recyclable, it is necessary to develop easily recyclable single materials. Herein, polypropylene (PP)-based cellulose nanofiber (CNF)/nanoclay nanocomposites were prepared by melt-mixing using a fixed CNF content of 1 wt %, while the nanoclay content varied from 1 to 5 wt %. The optimum nanoclay content in the PP matrix was found to be 3 wt % (PCN3), while they exhibited synergistic effects as a nucleating agent.
View Article and Find Full Text PDFParticle motion and coffee ring patterns in water-borne suspensions of polystyrene (PS) particle added with small amounts of secondary hydrophobic decalin are investigated during the drying of the suspension droplets, mainly employing light scattering methods. Very tiny secondary fluid insertions via high-speed agitation effectively link the particles through hydrophobic dissolution leading to the formation of multimodal particulate clusters, with resistance to the outward capillary flow and suppression of coffee ring formation after drying. The impact of decalin on particles is corroborated by actual images acquired from an optical profiler and a scanning electron microscope (SEM).
View Article and Find Full Text PDFThe crosslinking behaviors and gelation features of poly(ethylene glycol) (PEG) hydrogels were scrutinized during the UV and thermal polymerizations of mixtures of poly(ethylene glycol) methacrylate (PEGMA, monomer) and poly(ethylene glycol) dimethacrylates (PEGDMAs, crosslinkers). The real-time crosslinking behavior of the PEG hydrogels was quantified as a function of the UV irradiation time and reaction temperature during the UV and thermal polymerization, respectively, using real-time FT-IR spectrometry and rotational rheometry. The gelation characteristics of UV- and thermally crosslinked hydrogels were compared through the analysis of the gel fraction, swelling ratio, surface hardness, and the loading and release of rhodamine-B.
View Article and Find Full Text PDFA functional polyurethane based on the heterocyclic group was synthesized and its self-healing and mechanical properties were examined. To synthesize a heterocyclic polyurethane, a polyol and a heterocyclic compound with di-hydroxyl groups at both ends were blended and the blended solution was reacted with a crosslinker containing multiple isocyanate groups. The heterocyclic polyurethane demonstrates better self-healing efficiency than the conventional polyurethane with no heterocyclic groups.
View Article and Find Full Text PDF