Int J Pharm
September 2025
Cancer is the leading cause of death worldwide, and its burden is rapidly increasing with the aging population. Conventional treatment methods often cause side effects such as metastasis, multidrug resistance, and damage to surrounding healthy tissues. In recent years, with the rapid development of nanotechnology, nanomaterials have been explored for tumor treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2025
Effective bone regeneration remains a significant challenge in surgical practice, particularly due to the limitations associated with autologous bone grafting, such as donor site morbidity and limited bone availability. This study investigated the potential of human bone-derived endothelial cells (b-ECs) in mediating bone regeneration, especially in conjunction with bone marrow-derived mesenchymal stem cells (bm-MSCs). It is demonstrated that b-ECs retain unique osteoinductive properties post-isolation, crucial for promoting bone formation in vivo.
View Article and Find Full Text PDFBone tissue is highly vascularized, and robust blood flow is critical for successful bone regeneration. However, the intricate architecture of bone vascular networks and the mechanisms governing their development remain poorly understood, necessitating the development of in vitro models that replicate the native bone microenvironment. In this study, we investigated the influence of endothelial cell positioning within co-cultured spheroids on vascularization and osteogenic differentiation.
View Article and Find Full Text PDFEnergy storage and conversion extensively use MXenes, a class of 2-dimensional transition metals. Research is currently exploring MXenes in areas such as biomedical imaging, positioning them as a substantial contender in biomedical applications. Even though these biocompatible MXenes have many uses, it is challenging to make nanoparticles that are all the same size.
View Article and Find Full Text PDFMater Today Bio
June 2025
Microfluidic chip-based electrochemical sensors have been developed to detect cancer biomarkers and monitor changes in the tumor microenvironment. However, the limitation of detecting only a single biomarker restricts their utility as accurate diagnostic tools. Simultaneous detection of multiple tumor biomarkers is important for early diagnosis of cancer.
View Article and Find Full Text PDFJ Tissue Eng
October 2024
Stem cell factors (SCFs) are pivotal factors existing in both soluble and membrane-bound forms, expressed by endothelial cells (ECs) and fibroblasts throughout the body. These factors enhance cell growth, viability, and migration in multipotent cell lineages. The preferential expression of SCF by arteriolar ECs indicates that arterioles create a unique microenvironment tailored to hematopoietic stem cells (HSCs).
View Article and Find Full Text PDFOne of the bacterial infections caused by tympanic membrane perforation is otitis media (OM). Middle ear inflammation causes continuous pain and can be accompanied by aftereffects such as facial nerve paralysis if repeated chronically. Therefore, it is necessary to develop an artificial tympanic membrane (TM) that can effectively regenerate the eardrum due to the easy implantation and removal of OM inflammation.
View Article and Find Full Text PDFThe increasing demand for natural and safer alternatives to traditional hair dyes has led to the investigation of nanomaterials as potential candidates for hair coloring applications. MXene nanosheets have emerged as a promising alternative in this context due to their unique optical and electronic properties. In this study, we aimed to evaluate the potential of TiCT (T = -O, -OH, -F, ) MXene nanosheets as a hair dye.
View Article and Find Full Text PDFTissue Eng Regen Med
July 2024
Background: Mesenchymal stem cells (MSCs) are undifferentiated cells that can differentiate into specific cell lineages when exposed to the right conditions. The ability of MSCs to differentiate into particular cells is considered very important in biological research and clinical applications. MSC spheroids are clusters of MSCs cultured in three dimensions, which play an important role in enhancing the proliferation and differentiation of MSCs.
View Article and Find Full Text PDFMater Today Bio
December 2023
Wound healing is a critical process that facilitates the body's recovery from injuries and helps prevent infections, thereby maintaining overall tissue and organ functionality. However, delayed wound healing owing to various factors can lead to bacterial infections and secondary complications. In this study, a ciprofloxacin (CIP)-loaded MXene/sodium alginate (SA) hydrogel was fabricated to inhibit bacterial infections and enhance wound healing.
View Article and Find Full Text PDFSensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues.
View Article and Find Full Text PDFA 3D microenvironment with dynamic cell-biomaterial interactions was developed using a dual-responsive system for microenvironment remodeling and control of cellular function. A visible-light-responsive polymer was utilized to prepare a hydrogel with photodegradation properties, enabling microenvironment remodeling. Additionally, a vascular endothelial growth factor (VEGF) gene activation unit that was responsive to the same wavelength of light was incorporated to support the potential application of the system in regenerative medicine.
View Article and Find Full Text PDFMacromol Biosci
November 2021
Cryogels are gel networks or scaffolds with a large porous structure; they can be tailored for injectability and for possessing a shape-memory ability. Herein, a growth factor-releasing cryogel microparticle (CMP) system is fabricated, and the therapeutic efficacy of recombinant human vascular endothelial growth factor (rhVEGF)-loaded CMP (V-CMP) for neovascularization is investigated. To prepare the cryogels, both methacrylated chitosan (Chi-MA) and methacrylated chondroitin sulfate (CS-MA) are used, and crosslinking using a radical crosslinking reaction is established.
View Article and Find Full Text PDFStem cell-based therapy has been highlighted as a potential avenue to promote tissue regeneration, where stimulation of stem cells to differentiate into the targeted cell type is essential. One of the factors that induce stem cells to differentiate is their surrounding microenvironment. In this study, the correlation between mild reductant and early osteogenic commitment was evaluated.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
July 2021
Engineered muscle tissues can be used for the regeneration or substitution of irreversibly damaged or diseased muscles. Recently, graphene oxide (GO) has been shown to improve the adsorption of biomolecules through its biocompatibility and intrinsic π-π interactions. The possibility of producing various GO modifications may also provide additional functionality as substrates for cell culture.
View Article and Find Full Text PDFAdv Healthc Mater
July 2021
Regeneration of large bones remains a challenge in surgery. Recent developmental engineering efforts aim to recapitulate endochondral ossification (EO), a critical step in bone formation. However, this process entails the condensation of mesenchymal stem cells (MSCs) into cartilaginous templates, which requires long-term cultures and is challenging to scale up.
View Article and Find Full Text PDFThe capability of forming functional blood vessel networks is critical for the characterization of endothelial cells. In this chapter, we will review a modified in vivo vascular network forming assay by replacing traditional mouse tumor-derived Matrigel with a well-defined collagen-fibrin hydrogel. The assay is reliable and does not require special equipment, surgical procedure, or a skilled person to perform.
View Article and Find Full Text PDFVarious strategies have been explored to stimulate new bone formation. These strategies include using angiogenic stimulants in combination with inorganic biomaterials. Neovascularization during the neo-bone formation provides nutrients along with bone-forming minerals.
View Article and Find Full Text PDFACS Appl Bio Mater
October 2018
Loss of voice after vocal fold resection due to laryngeal cancer is a significant problem resulting in a low quality of life. Although there were many attempts to achieve a functional restoration of voice, challenges to regenerate vocal fold still remain due to its unique tissue mechanical characteristics such as pliability that produces phonation via vibration. In this study, we developed a mechanically compliant interpenetrating polymer network (IPN) hydrogel based on polyacrylamide (PAAM) and gelatin that matches physical and functional properties with native vocal fold tissue.
View Article and Find Full Text PDFBiomater Res
January 2018
Background: Tissue engineering is an interdisciplinary field that attempts to restore or regenerate tissues and organs through biomimetic fabrication of scaffolds with specific functionality. In recent years, graphene oxide (GO) is considered as promising biomaterial due to its nontoxicity, high dispersity, and hydrophilic interaction, and these characteristics are key to stimulating the interactions between substrates and cells.
Method: In this study, GO substrates were fabricated via chemically immobilizing GO at 1.
Cell surface modification has been extensively studied to enhance the efficacy of cell therapy. Still, general accessibility and versatility are remaining challenges to meet the increasing demand for cell-based therapy. Herein, we present a facile and universal cell surface modification method that involves mild reduction of disulfide bonds in cell membrane protein to thiol groups.
View Article and Find Full Text PDFMeniscus tissues have limited regenerative capacity once damaged. The treatment options for the meniscus tissue regeneration have been limited to arthroscopic meniscectomy or surgical interventions. The injectable hydrogels based system would provide an alternative to the conventional meniscus therapy by providing a minimally invasive treatment alternative.
View Article and Find Full Text PDFPolymers (Basel)
November 2017
Articular cartilage has a very limited regeneration capacity. Therefore, injury or degeneration of articular cartilage results in an inferior mechanical stability, load-bearing capacity, and lubrication capability. Here, we developed a biomimetic scaffold consisting of macroporous polyvinyl alcohol (PVA) sponges as a platform material for the incorporation of cell-embedded photocrosslinkable poly(ethylene glycol) diacrylate (PEGDA), PEGDA-methacrylated chondroitin sulfate (PEGDA-MeCS; PCS), or PEGDA-methacrylated hyaluronic acid (PEGDA-MeHA; PHA) within its pores to improve in vitro chondrocyte functions and subsequent in vivo ectopic cartilage tissue formation.
View Article and Find Full Text PDFAdv Healthc Mater
December 2017
Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells.
View Article and Find Full Text PDFACS Biomater Sci Eng
October 2017
Graphene oxide (GO) is considered a comparatively recent biomaterial with enormous potential because of its nontoxicity, high dispersity, and enhanced interaction with biomolecules. These characteristics of GO can promote the interactions between the substrates and cell surfaces. In this study, we incorporated GO in a cryogel-based scaffold system to observe their influence on the osteogenic responses of human tonsil-derived mesenchymal stem cells (hTMSCs).
View Article and Find Full Text PDF