Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Stem cell-based therapy has been highlighted as a potential avenue to promote tissue regeneration, where stimulation of stem cells to differentiate into the targeted cell type is essential. One of the factors that induce stem cells to differentiate is their surrounding microenvironment. In this study, the correlation between mild reductant and early osteogenic commitment was evaluated. A cell surface-reducing microenvironment significantly silenced the transforming growth factor (TGF)-β signaling pathway of mesenchymal stem cells (MSCs), followed by increased focal adhesion and inhibition of cell membrane protein dimerization. Furthermore, in vivo transplantation of MSCs exposed to the reducing microenvironment resulted in an early osteogenic commitment and neobone formation. Thus, these results highlight the potential of cell surface-reducing microenvironment to influence early osteogenic commitment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.14160 | DOI Listing |