Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell surface modification has been extensively studied to enhance the efficacy of cell therapy. Still, general accessibility and versatility are remaining challenges to meet the increasing demand for cell-based therapy. Herein, we present a facile and universal cell surface modification method that involves mild reduction of disulfide bonds in cell membrane protein to thiol groups. The reduced cells are successfully coated with biomolecules, polymers, and nanoparticles for an assortment of applications, including rapid cell assembly, in vivo cell monitoring, and localized cell-based drug delivery. No adverse effect on cellular morphology, viability, proliferation, and metabolism is observed. Furthermore, simultaneous coating with polyethylene glycol and dexamethasone-loaded nanoparticles facilitates enhanced cellular activities in mice, overcoming immune rejection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b08440DOI Listing

Publication Analysis

Top Keywords

mild reduction
8
cell surface
8
surface modification
8
cell
6
general facile
4
facile coating
4
coating single
4
single cells
4
cells mild
4
reduction cell
4

Similar Publications

Evaluating the Long-term Effects of Microfocused Ultrasound on Facial Tightening Using Quantitative Instruments: Efficacy and Safety.

Aesthetic Plast Surg

September 2025

Department of Plastic Surgery, The First Affiliated Hospital, Jinan University, No. 613 West, Huangpu Avenue, Guangzhou, 510630, Guangdong Province, China.

Background: Microfocused ultrasound (MFU) is a non-invasive technique used for facial rejuvenation, yet there is limited quantitative data on its long-term effects. This study aimed to evaluate the long-term efficacy and safety of MFU for facial rejuvenation. We utilized standardized photography along with advanced skin assessment technologies to analyze the impact of MFU on facial morphology, skin function, and patient satisfaction over a 12-month period.

View Article and Find Full Text PDF

Objective: Therapeutic potential of selective aggrecanase inhibition in osteoarthritis (OA) was previously demonstrated using a variant of endogenous tissue inhibitor of metalloproteinase-3 (TIMP-3); however, this relied on transgenic mice overexpressing TIMP-3. Here, we develop a translational approach for harnessing the aggrecanase-selective inhibitory activity of TIMP-3 using the latency associated peptide (LAP) technology.

Methods: We successfully produced and purified recombinant LAP-TIMP-3 fusion proteins and determined the pharmacokinetics of these proteins in vivo following systemic injection.

View Article and Find Full Text PDF

Compositional "plainification" in biodegradable magnesium-rare earth alloys - Achieving well-balanced performance in an ultra-lean Mg-Pr alloy.

Biomaterials

September 2025

Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China. Electronic address:

Contrary to the traditional strengthening route by adding multiple & high-dosage alloying elements, we here explored extremely compositional and phase-constituent "simplification" in rare earth (RE) containing biodegradable magnesium alloys for better biocompatibility. An ultra-lean Mg-0.1Pr alloy with a multiscale microstructure has been developed through casting and extrusion, which showed well-balanced performances that match the commercial Mg-based orthopedic products.

View Article and Find Full Text PDF

Background: Lumbar spinal stenosis (LSS) is common in adults with achondroplasia and predisposes individuals to neurogenic claudication. It remains unverified whether the severity of stenosis in patients with achondroplasia is associated with clinical outcomes. Similarly, the role of sagittal balance parameters in clinical outcomes has not been determined.

View Article and Find Full Text PDF