Various time series in natural and social processes have been found to be bursty. Events in the time series rapidly occur within short time periods, forming bursts, which are alternated with long inactive periods. As the timescale defining bursts increases, individual events are sequentially merged to become small bursts and then bigger ones, eventually leading to the single burst containing all events.
View Article and Find Full Text PDFMembers of a society can be characterized by a large number of features, such as gender, age, ethnicity, religion, social status, and shared activities. One of the main tie-forming factors between individuals in human societies is homophily, the tendency of being attracted to similar others. Homophily has been studied mainly in the context of link formation and social dynamics.
View Article and Find Full Text PDFUnderstanding the characteristics of temporal correlations in a time series is crucial for developing accurate models in natural and social sciences. The burst-tree decomposition method was recently introduced to reveal temporal correlations in a time series in the form of an event sequence, in particular, the hierarchical structure of bursty trains of events for the entire range of timescales [Jo et al., Sci.
View Article and Find Full Text PDFMarch's celebrated agent-based simulation model for organizational learning [J. G. March, Org.
View Article and Find Full Text PDFLong-term temporal correlations in time series in a form of an event sequence have been characterized using an autocorrelation function that often shows a power-law decaying behavior. Such scaling behavior has been mainly accounted for by the heavy-tailed distribution of interevent times, i.e.
View Article and Find Full Text PDFWe analyze the dataset of confirmed cases of severe acute respiratory syndrome coronavirus 2 (COVID-19) in the Republic of Korea, which contains transmission information on who infected whom as well as temporal information regarding when the infection possibly occurred. We derive time series of mesoscopic transmission networks using the location and age of each individual in the dataset to see how the structure of these networks changes over time in terms of clustering and link prediction. We find that the networks are clustered to a large extent, while those without weak links could be seen as having a tree structure.
View Article and Find Full Text PDFA heterogeneous structure of social networks induces various intriguing phenomena. One of them is the friendship paradox, which states that on average, your friends have more friends than you do. Its generalization, called the generalized friendship paradox (GFP), states that on average, your friends have higher attributes than yours.
View Article and Find Full Text PDFPhys Rev E
November 2021
One of the interesting phenomena due to the topological heterogeneities in complex networks is the friendship paradox, stating that your friends have on average more friends than you do. Recently, this paradox has been generalized for arbitrary nodal attributes, called a generalized friendship paradox (GFP). In this paper, we analyze the GFP for the networks in which the attributes of neighboring nodes are correlated with each other.
View Article and Find Full Text PDFFront Big Data
September 2021
Interactions between humans give rise to complex social networks that are characterized by heterogeneous degree distribution, weight-topology relation, overlapping community structure, and dynamics of links. Understanding these characteristics of social networks is the primary goal of their research as they constitute scaffolds for various emergent social phenomena from disease spreading to political movements. An appropriate tool for studying them is agent-based modeling, in which nodes, representing individuals, make decisions about creating and deleting links, thus yielding various macroscopic behavioral patterns.
View Article and Find Full Text PDFThe origin of non-Poissonian or bursty temporal patterns observed in various data sets for human social dynamics has been extensively studied, yet its understanding still remains incomplete. Considering the fact that humans are social beings, a fundamental question arises: Is the bursty human dynamics dominated by individual characteristics or by interaction between individuals? In this paper we address this question by analyzing the Wikipedia edit history to see how spontaneous individual editors are in initiating bursty periods of editing, i.e.
View Article and Find Full Text PDFWe study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model, each individual's opinion is represented by a real number on a finite interval, e.g.
View Article and Find Full Text PDFDynamics of complex social systems has often been described in the framework of temporal networks, where links are considered to exist only at the moment of interaction between nodes. Such interaction patterns are not only driven by internal interaction mechanisms, but also affected by environmental changes. To investigate the impact of the environmental changes on the dynamics of temporal networks, we analyze several face-to-face interaction datasets using the multiscale entropy (MSE) method to find that the observed temporal correlations can be categorized according to the environmental similarity of datasets such as classes and break times in schools.
View Article and Find Full Text PDFComprehensive characterization of non-Poissonian, bursty temporal patterns observed in various natural and social processes is crucial for understanding the underlying mechanisms behind such temporal patterns. Among them bursty event sequences have been studied mostly in terms of interevent times (IETs), while the higher-order correlation structure between IETs has gained very little attention due to the lack of a proper characterization method. In this paper we propose a method of representing an event sequence by a burst tree, which is then decomposed into a set of IETs and an ordinal burst tree.
View Article and Find Full Text PDFWe present a link-centric approach to study variation in the mobile phone communication patterns of individuals. Unlike most previous research on call detail records that focused on the variation of phone usage across individual users, we examine how the calling and texting patterns obtained from call detail records vary among pairs of users and how these patterns are affected by the nature of relationships between users. To demonstrate this link-centric perspective, we extract factors that contribute to the variation in the mobile phone communication patterns and predict demographics-related quantities for pairs of users.
View Article and Find Full Text PDFDynamical processes in various natural and social phenomena have been described by a series of events or event sequences showing non-Poissonian, bursty temporal patterns. Temporal correlations in such bursty time series can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. Modeling and simulating various dynamical processes requires us to generate event sequences with a heavy-tailed IET distribution and memory effects between IETs.
View Article and Find Full Text PDFLong-term temporal correlations observed in event sequences of natural and social phenomena have been characterized by algebraically decaying autocorrelation functions. Such temporal correlations can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. In contrast to the role of heterogeneous IETs on the autocorrelation function, little is known about the effects due to the correlations between IETs.
View Article and Find Full Text PDFNat Hum Behav
October 2019
People's perceptions about the size of minority groups in social networks can be biased, often showing systematic over- or underestimation. These social perception biases are often attributed to biased cognitive or motivational processes. Here we show that both over- and underestimation of the size of a minority group can emerge solely from structural properties of social networks.
View Article and Find Full Text PDFIn a social network individuals or nodes connect to other nodes by choosing one of the channels of communication at a time to re-establish the existing social links. Since available data sets are usually restricted to a limited number of channels or layers, these autonomous decision making processes by the nodes constitute the sampling of a multiplex network leading to just one (though very important) example of sampling bias caused by the behavior of the nodes. We develop a general setting to get insight and understand the class of network sampling models, where the probability of sampling a link in the original network depends on the attributes h of its adjacent nodes.
View Article and Find Full Text PDFTopological heterogeneities of social networks have a strong impact on the individuals embedded in those networks. One of the interesting phenomena driven by such heterogeneities is the friendship paradox (FP), stating that the mean degree of one's neighbors is larger than the degree of oneself. Alternatively, one can use the median degree of neighbors as well as the fraction of neighbors having a higher degree than oneself.
View Article and Find Full Text PDFUnderstanding the mechanisms behind human mobility patterns is crucial to improve our ability to optimize and predict traffic flows. Two representative mobility models, i.e.
View Article and Find Full Text PDFWe introduce a model for the formation of social networks, which takes into account the homophily or the tendency of individuals to associate and bond with similar others, and the mechanisms of global and local attachment as well as tie reinforcement due to social interactions between people. We generalize the weighted social network model such that the nodes or individuals have F features and each feature can have q different values. Here the tendency for the tie formation between two individuals due to the overlap in their features represents homophily.
View Article and Find Full Text PDFCommun Biol
November 2018
Circadian clocks play a pivotal role in orchestrating numerous physiological and developmental events. Waveform shapes of the oscillations of protein abundances can be informative about the underlying biochemical processes of circadian clocks. We derive a mathematical framework where waveforms do reveal hidden biochemical mechanisms of circadian timekeeping.
View Article and Find Full Text PDFSpreading dynamics has been considered to take place in temporal networks, where temporal interaction patterns between nodes show non-Poissonian bursty nature. The effects of inhomogeneous interevent times (IETs) on the spreading have been extensively studied in recent years, yet little is known about the effects of correlations between IETs on the spreading. In order to investigate those effects, we study two-step deterministic susceptible-infected (SI) and probabilistic SI dynamics when the interaction patterns are modeled by inhomogeneous and correlated IETs, i.
View Article and Find Full Text PDFTemporal inhomogeneities observed in various natural and social phenomena have often been characterized in terms of scaling behaviors in the autocorrelation function with a decaying exponent γ, the interevent time distribution with a power-law exponent α, and the burst size distributions. Here the interevent time is defined as a time interval between two consecutive events in the event sequence, and the burst size denotes the number of events in a bursty train detected for a given time window. To understand such temporal scaling behaviors implying a hierarchical temporal structure, we devise a hierarchical burst model by assuming that each observed event might be a consequence of the multilevel causal or decision-making process.
View Article and Find Full Text PDFTemporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.
View Article and Find Full Text PDF