Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
One of the interesting phenomena due to the topological heterogeneities in complex networks is the friendship paradox, stating that your friends have on average more friends than you do. Recently, this paradox has been generalized for arbitrary nodal attributes, called a generalized friendship paradox (GFP). In this paper, we analyze the GFP for the networks in which the attributes of neighboring nodes are correlated with each other. The correlation structure between attributes of neighboring nodes is modeled by the Farlie-Gumbel-Morgenstern copula, enabling us to derive approximate analytical solutions of the GFP for three kinds of methods summarizing the neighborhood of the focal node, i.e., mean-based, median-based, and fraction-based methods. The analytical solutions are comparable to simulation results, while some systematic deviations between them might be attributed to the higher-order correlations between nodal attributes. These results help us get deeper insight into how various summarization methods as well as the correlation structure of nodal attributes affect the GFP behavior, hence better understand various related phenomena in complex networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.054301 | DOI Listing |