Publications by authors named "Hae-Kap Cheong"

Forkhead box O4 (FOXO4), a human transcription factor, recognizes target DNA through its forkhead domain (FHD) while maintaining comparable binding affinity to non-target DNA. The conserved region 3 (CR3), a transactivation domain, modulates DNA binding kinetics to FHD and contributes to target DNA selection, but the underlying mechanism of this selection remains elusive. Using paramagnetic relaxation enhancement analysis, we observed a minor state of CR3 close to FHD in the presence of non-target DNA, a state absent when FHD interacts with target DNA.

View Article and Find Full Text PDF
Article Synopsis
  • Methylene blue (MB) recently completed a Phase-3 trial for Alzheimer's treatment, focusing on its effects on tau protein aggregation.
  • Research showed that MB induces disulfide bond formation in tau proteins, changing their structure significantly.
  • The oxidized form, methylthioninium (MT), specifically targets certain cysteine residues in tau, potentially preventing tau fibrillation under low oxygen conditions in the brain.
View Article and Find Full Text PDF

Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets.

View Article and Find Full Text PDF

Because organic molecules and materials are generally insensitive or weakly sensitive to magnetic fields, a certain means to enhance their magnetic responsiveness needs to be exploited. Here we show a strategy to amplify the magnetic responsiveness of self-assembled peptide nanostructures by synergistically combining the concepts of perfect α-helix and rod-coil supramolecular building blocks. Firstly, we develop a monomeric, nonpolar, and perfect α-helix (MNP-helix).

View Article and Find Full Text PDF

Although interest in stabilized α-helical peptides as next-generation therapeutics for modulating biomolecular interfaces is increasing, peptides have limited functionality and stability due to their small size. In comparison, α-helical ligands based on proteins can make steric clash with targets due to their large size. Here, we report the design of a monomeric pseudo-isolated α-helix (mPIH) system in which proteins behave as if they are peptides.

View Article and Find Full Text PDF

Protein dimerization or oligomerization resulting from swapping part of the protein between neighboring polypeptide chains is known to play a key role in the regulation of protein function and in the formation of protein aggregates. Glutaredoxin-1 from (cGrx1) was used as a model to explore the formation of multiple domain-swapped conformations, which were made possible by modulating several hinge-loop residues that can form a pivot for domain swapping. Specifically, two alternative domain-swapped structures were generated and analyzed using nuclear magnetic resonance (NMR), X-ray crystallography, circular-dichroism spectroscopy and hydrogen/deuterium-exchange (HDX) mass spectrometry.

View Article and Find Full Text PDF

Nonenzymatic acetylation of Lys side chains (Lys-SCs) by various in vivo reactive molecules has been suggested to play novel regulatory roles. Ubiquitin (UB) has seven Lys residues that are utilized for synthesis of specific poly-UB chains. To understand the nature of these Lys-SC modifications, the chemical acetylation rate and pK and Hill coefficient of each UB-Lys-SC were measured.

View Article and Find Full Text PDF

Bloom syndrome protein (BLM) is one of five human RecQ helicases which maintain genomic stability. Interaction of BLM with replication protein A (RPA) stimulates the DNA unwinding ability of BLM. The interaction is expected to be crucial in the DNA damage response.

View Article and Find Full Text PDF

Interaction between angiogenin and the p53 TAD2 domain in cancer cells can inhibit the function of the p53 tumor suppressor and promote cell survival. Based on a model structure using NMR and mutational analysis, positively charged RRR and KRSIK motifs of human angiogenin were identified as p53-binding sites that could interact with negatively charged D48/E51 and E56 residues of the p53 TAD2 domain, respectively. These results suggest that RRR and KRSIK motifs of human angiogenin might play a critical role in the regulation of p53-mediated apoptosis and angiogenesis in cancer cells.

View Article and Find Full Text PDF

The periplasmic domain of OmpA from Acinetobacter baumannii (AbOmpA-PD) binds to diaminopimelate and anchors the outer membrane to the peptidoglycan layer in the cell wall. Although the crystal structure of AbOmpA-PD with its ligands has been reported, the mechanism of ligand-mediated folding of AbOmpA remains elusive. Here, we report that in vitro refolded apo-AbOmpA-PD in the absence of ligand exists as a mixture of two partially folded forms in solution: mostly unfolded (apo-state I) and hololike (apo-state II) states.

View Article and Find Full Text PDF

Bacteria sense and respond to osmolarity through the EnvZ-OmpR two-component system. The structure of the periplasmic sensor domain of EnvZ (EnvZ-PD) is not available yet. Here, we present the crystal structure of EnvZ-PD in the presence of CHAPS detergent.

View Article and Find Full Text PDF

EFhd2/Swiprosin-1 is a cytoskeletal Ca-binding protein implicated in Ca-dependent cell spreading and migration in epithelial cells. EFhd2 domain architecture includes an N-terminal disordered region, a PxxP motif, two EF-hands, a ligand mimic helix and a C-terminal coiled-coil domain. We reported previously that EFhd2 displays F-actin bundling activity in the presence of Ca and this activity depends on the coiled-coil domain and direct interaction of the EFhd2 core region.

View Article and Find Full Text PDF

A Z-DNA binding protein (ZBP)-containing protein kinase (PKZ) in fish species has an important role in the innate immune response. Previous structural studies of the Zα domain of the PKZ from Carassius auratus (caZα) showed that the protein initially binds to B-DNA and induces B-Z transition of double stranded DNA in a salt concentration-dependent manner. However, the significantly reduced B-Z transition activity of caZα at high salt concentration was not fully understood.

View Article and Find Full Text PDF

The quaternary-amino-ethyl 1 (QAE1) isoforms of type III antifreeze proteins (AFPs) prevent the growth of ice crystals within organisms living in polar regions. We determined the antifreeze activity of wild-type and mutant constructs of the Japanese notched-fin eelpout (Zoarces elongates Kner) AFP8 (nfeAFP8) and characterized the structural and dynamics properties of their ice-binding surface using NMR. We found that the three constructs containing the V20G mutation were incapable of stopping the growth of ice crystals and exhibited structural changes, as well as increased conformational flexibility, in the first 3 helix (residues 18-22) of the sequence.

View Article and Find Full Text PDF

Bacterial two-component signal transduction systems are used to adapt to fluctuations in the environment. YycG, a key two-component histidine kinase in Staphylococcus aureus, plays an essential role in cell viability and regulates cell wall metabolism, biofilm formation, virulence, and antibiotic resistance. For these reasons, YycG is considered a compelling target for the development of novel antibiotics.

View Article and Find Full Text PDF

In enterohemorrhagic Escherichia coli (EHEC), the QseEF two-component system causes attaching and effacing (AE) lesion on epithelial cells. QseE histidine kinase senses the host hormone epinephrine, sulfate, and phosphate; it also regulates QseF response regulator, which activates LEE gene that encodes AE lesion. In order to understand the recognition of ligand molecules and signal transfer mechanism in pathogenic bacteria, structural studies of the sensor domain of QseE of Escherichia coli should be conducted.

View Article and Find Full Text PDF

Z-DNA binding proteins (ZBPs) play important roles in RNA editing, innate immune response and viral infection. Structural and biophysical studies show that ZBPs initially form an intermediate complex with B-DNA for B-Z conversion. However, a comprehensive understanding of the mechanism of Z-DNA binding and B-Z transition is still lacking, due to the absence of structural information on the intermediate complex.

View Article and Find Full Text PDF

A molecular Solomon link was synthesized in high yield through the template-free, coordination-driven self-assembly of a carbazole-functionalized donor and a tetracene-based dinuclear ruthenium(II) acceptor. The doubly interlocked topology was realized by a strategically chosen ligand which was capable of participating in multiple CH⋅⋅⋅π and π-π interactions, as evidenced from single-crystal X-ray analysis and computational studies. This method is the first example of a two-component self-assembly of a molecular Solomon link using a directional bonding approach.

View Article and Find Full Text PDF

The Hox DNA binding domain, the homeodomain, plays critical roles in genetic control of development and cell fate determination. The variable regulatory functions of Hox proteins are accomplished by binding to target DNA sequences and collaborating protein partners that includes human high mobility group B1 (HMGB1). To better understand the interaction between Hox and HMGB1 and the facilitation of Hox-DNA binding by HMGB1, we solved the solution structure of the homeodomain of Hox including the N-terminal arm region (Hoxc9DBD hereafter).

View Article and Find Full Text PDF

The ubiquitin E2 enzymes, Ube2g1 and Ube2r1, are able to synthesize Lys-48-linked polyubiquitins without an E3 ligase but how that is accomplished has been unclear. Although both E2s contain essential acidic loops, only Ube2r1 requires an additional C-terminal extension (184-196) for efficient Lys-48-ubiquitylation activity. The presence of Tyr-102 and Tyr-104 in the Ube2g1 acidic loop enhanced both ubiquitin binding and Lys-48-ubiquitylation and distinguished Ube2g1 from the otherwise similar truncated Ube2r1(1-183) (Ube2r1C).

View Article and Find Full Text PDF

The heparin complex of rat angiogenin revealed that a heparin strand is fitted into a positively charged groove formed by the dual binding site of rat angiogenin, suggesting that cell adhesion to angiogenin is facilitated by its interaction with substrates on the cell surface and can be inhibited by heparin.

View Article and Find Full Text PDF

The DraR/DraK two-component system was found to be involved in the differential regulation of antibiotic biosynthesis in a medium-dependent manner; however, its function and signaling and sensing mechanisms remain unclear. Here, we describe the solution structure of the extracellular sensor domain of DraK and suggest a mechanism for the pH-dependent conformational change of the protein. The structure contains a mixed alpha-beta fold, adopting a fold similar to the ubiquitous sensor domain of histidine kinase.

View Article and Find Full Text PDF

Despite recent progress in research on the Hippo signalling pathway, the structural information available in this area is extremely limited. Intriguingly, the homodimeric and heterodimeric interactions of mammalian sterile 20-like (MST) kinases through the so-called `SARAH' (SAV/RASSF/HPO) domains play a critical role in cellular homeostasis, dictating the fate of the cell regarding cell proliferation or apoptosis. To understand the mechanism of the heterodimerization of SARAH domains, the three-dimensional structures of an MST1-RASSF5 SARAH heterodimer and an MST2 SARAH homodimer were determined by X-ray crystallography and were analysed together with that previously determined for the MST1 SARAH homodimer.

View Article and Find Full Text PDF

Repeat proteins have recently attracted much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural and biophysical features. In particular, repeat proteins show high stability against temperature and chaotic agents. Despite many studies, structural features for the stability of repeat proteins remain poorly understood.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a multifunctional cytokine that regulates immune responses for host defense and tumorigenic process. Upregulation of IL-6 is known to constitutively phosphorylate signal transducer and activator of transcription 3 (STAT3), leading to activation of multiple oncogene pathways and inflammatory cascade. Here, we present the development of a high-affinity protein binder, termed repebody, which effectively suppresses non-small cell lung cancer in vivo by blocking the IL-6/STAT3 signaling.

View Article and Find Full Text PDF