98%
921
2 minutes
20
Bacterial two-component signal transduction systems are used to adapt to fluctuations in the environment. YycG, a key two-component histidine kinase in Staphylococcus aureus, plays an essential role in cell viability and regulates cell wall metabolism, biofilm formation, virulence, and antibiotic resistance. For these reasons, YycG is considered a compelling target for the development of novel antibiotics. However, to date, the signaling mechanism of YycG and its stimulus are poorly understood mainly because of a lack of structural information on YycG. To address this deficiency, we determined the crystal structure of the extracellular domain of S. aureus YycG (YycGex) at 2.0-Å resolution. The crystal structure indicated two subunits with an extracellular Per-Arnt-Sim (PAS) topology packed into a dimer with interloop interactions. Disulfide scanning using cysteine-substituted mutants revealed that YycGex possessed dimeric interfaces not only in the loop but also in the helix α1. Cross-linking studies using intact YycG demonstrated that it was capable of forming high molecular weight oligomers on the cell membrane. Furthermore, we also observed that two auxiliary proteins of YycG, YycH and YycI, cooperatively interfered with the multimerization of YycG. From these results, we propose that signaling through YycG is regulated by multimerization and binding of YycH and YycI. These structural studies, combined with biochemical analyses, provide a better understanding of the signaling mechanism of YycG, which is necessary for developing novel antibacterial drugs targeting S. aureus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2016.06.019 | DOI Listing |
Microbiol Spectr
October 2024
P3 Research Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
Eur J Med Chem
November 2024
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:
The rapid emergence and spread of multidrug-resistant (MDR) Gram-positive pathogens present a significant challenge to global healthcare. Methicillin-resistant Staphylococcus aureus (MRSA) is a particular concern because of its high resistance to most antibiotics. Based on our previously reported chemical structure of compound 62, a series of novel derivatives were synthesized and evaluated for their antibacterial activities.
View Article and Find Full Text PDFmSphere
June 2024
Department of Chemistry, University of Georgia, Athens, Georgia, USA.
Unlabelled: Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant . In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin resistance: , , and .
View Article and Find Full Text PDFInfect Genet Evol
January 2024
Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, USA. Electronic address:
Staphylococcus aureus are gram-positive bacteria responsible for a wide array of diseases, ranging from skin and soft tissue infections to more chronic illnesses such as toxic shock syndrome, osteomyelitis, and endocarditis. Vancomycin is currently one of the most effective antibiotics available in treating patients infected with methicillin-resistant S. aureus (MRSA), however the emergence of vancomycin-resistant S.
View Article and Find Full Text PDFbioRxiv
April 2024
Department of Chemistry, University of Georgia, Athens, GA, USA.
Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant . In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin-resistance: , , and .
View Article and Find Full Text PDF