Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial two-component signal transduction systems are used to adapt to fluctuations in the environment. YycG, a key two-component histidine kinase in Staphylococcus aureus, plays an essential role in cell viability and regulates cell wall metabolism, biofilm formation, virulence, and antibiotic resistance. For these reasons, YycG is considered a compelling target for the development of novel antibiotics. However, to date, the signaling mechanism of YycG and its stimulus are poorly understood mainly because of a lack of structural information on YycG. To address this deficiency, we determined the crystal structure of the extracellular domain of S. aureus YycG (YycGex) at 2.0-Å resolution. The crystal structure indicated two subunits with an extracellular Per-Arnt-Sim (PAS) topology packed into a dimer with interloop interactions. Disulfide scanning using cysteine-substituted mutants revealed that YycGex possessed dimeric interfaces not only in the loop but also in the helix α1. Cross-linking studies using intact YycG demonstrated that it was capable of forming high molecular weight oligomers on the cell membrane. Furthermore, we also observed that two auxiliary proteins of YycG, YycH and YycI, cooperatively interfered with the multimerization of YycG. From these results, we propose that signaling through YycG is regulated by multimerization and binding of YycH and YycI. These structural studies, combined with biochemical analyses, provide a better understanding of the signaling mechanism of YycG, which is necessary for developing novel antibacterial drugs targeting S. aureus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2016.06.019DOI Listing

Publication Analysis

Top Keywords

yycg
11
structural studies
8
extracellular domain
8
histidine kinase
8
staphylococcus aureus
8
signaling mechanism
8
mechanism yycg
8
crystal structure
8
yych yyci
8
studies extracellular
4

Similar Publications

Article Synopsis
  • Daptomycin (DAP) is an antibiotic used to treat drug-resistant infections like MRSA, but resistance to DAP is becoming more common and occurs through various mechanisms.
  • This study examines how DAP resistance affects the sensitivity to the phage Sb-1 in 14 clinical MRSA strains, finding that resistant strains are more susceptible to the phage.
  • Results show that DAP-resistant mutant strains have increased phage sensitivity and differences in their cell wall structure compared to DAP-susceptible strains, suggesting that using phages alongside DAP could be an effective way to combat resistance.*
View Article and Find Full Text PDF

The rapid emergence and spread of multidrug-resistant (MDR) Gram-positive pathogens present a significant challenge to global healthcare. Methicillin-resistant Staphylococcus aureus (MRSA) is a particular concern because of its high resistance to most antibiotics. Based on our previously reported chemical structure of compound 62, a series of novel derivatives were synthesized and evaluated for their antibacterial activities.

View Article and Find Full Text PDF

Unlabelled: Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant . In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin resistance: , , and .

View Article and Find Full Text PDF

Staphylococcus aureus are gram-positive bacteria responsible for a wide array of diseases, ranging from skin and soft tissue infections to more chronic illnesses such as toxic shock syndrome, osteomyelitis, and endocarditis. Vancomycin is currently one of the most effective antibiotics available in treating patients infected with methicillin-resistant S. aureus (MRSA), however the emergence of vancomycin-resistant S.

View Article and Find Full Text PDF

Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant . In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin-resistance: , , and .

View Article and Find Full Text PDF