Publications by authors named "Habib-Ur-Rehman Athar"

Article Synopsis
  • The study looked at two types of rapeseed plants, ZS758 and ZD622, to see how well they can handle stress from chromium, a heavy metal that can be harmful to plants.! -
  • ZS758 did better than ZD622 under this stress because it had less harmful substances in it and worked harder to protect itself using special enzymes.! -
  • The findings suggest that ZS758 is a better choice for growing in areas with chromium stress because it keeps its plant parts healthier and can better use sunlight for energy.!
View Article and Find Full Text PDF

Disputes about the probable availability of safe water and the efficacy of processed wastewater are key issues that necessitate a suitable solution to enhance the quality of clean water. The current research emphasizes the synthesis of ZnSe-reduced graphene oxide nanocomposites (ZnSe:rGO) with different weight ratios of rGO (represented as X = 0.6, 1 and 1.

View Article and Find Full Text PDF

The rapid increase in population growth under changing climatic conditions causes drought stress, threatening world food security. The identification of physiological and biochemical traits acting as yield-limiting factors in diverse germplasm is pre-requisite for genetic improvement under water-deficit conditions. The major aim of the present study was the identification of drought-tolerant wheat cultivars with a novel source of drought tolerance from local wheat germplasm.

View Article and Find Full Text PDF

Plant salt tolerance is controlled by various physiological processes such as water and ion homeostasis, photosynthesis, and cellular redox balance, which are in turn controlled by gene expression. In the present study, plants of six canola cultivars (DGL, Dunkled, Faisal Canola, Cyclone, Legend, and Oscar) were evaluated for salt tolerance by subjecting them to 0 or 200 mM NaCl stress. Based on growth, cultivars DGL, Dunkled, and Faisal Canola were ranked as salt tolerant, while cultivars Cyclone, Legend, and Oscar were ranked as salt-sensitive ones.

View Article and Find Full Text PDF

Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress.

View Article and Find Full Text PDF

Tannery effluent contains a number of organic and inorganic elements as pollutants which reduce plant growth. To overcome shortage of water, use of diluted industrial wastewater such as tannery effluent can be a viable strategy for improving crop growth and yield. A pot experiment was conducted to determine the effects of tannery effluent and its various dilutions on physiological and biochemical characteristics of five cucurbitaceous vegetables.

View Article and Find Full Text PDF

Salt stress obstructs plant's growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant's antioxidant defense system to combat adverse effects of salinity stress. In order to quantify the Si-mediated salinity tolerance, we studied the role of Si (200 ppm) applied through rooting media on antioxidant battery system of barley genotypes; B-10008 (salt-tolerant) and B-14011 (salt-sensitive) subjected to salt stress (200 mM NaCl).

View Article and Find Full Text PDF

Foliar-application of nano-particles enhanced the foliar nutrient status and crop growth and yield. It is hypothesized that being second messenger molecule, supplementation of Ca via calcium nanoparticles (Ca-NPs) can trigger various signaling pathways of physiological processes which can lead to alleviate the adverse effects of drought stress on the growth of canola (Brassica napus L.).

View Article and Find Full Text PDF

Global food production is threatened due to increasing salinity and can be stabilized by improving salt tolerance of crops. In the current study, salt tolerance potential of 40 local wheat cultivars against 150 mM NaCl stress was explored. Salt treatment at seedling stage caused less reduction in biomass, K and P while more decline of Na in tolerant cultivars due to reduced translocation and enhanced exclusion of Na from leaves.

View Article and Find Full Text PDF

The accumulation of cadmium (Cd) in leaves reduces photosynthetic capacity by degrading photosynthetic pigments, reducing photosystem II activity, and producing reactive oxygen species (ROS). Though it was demonstrated that the application of Methyl Jasmonate (MeJA) induces heavy metal (HM) stress tolerance in plants, its role in adjusting redox balance and photosynthetic machinery is unclear. In this study, the role of MeJA in modulating photosystem II (PSII) activity and antioxidant defense system was investigated to reduce the toxic effects of Cd on the growth of pea ( L.

View Article and Find Full Text PDF

Drought is one of the most important abiotic stress factors limiting maize production worldwide. The objective of this study was to investigate whether photoprotection of PSII was associated with the degree of drought tolerance and yield in three maize hybrids (30Y87, 31R88, P3939). To do this, three maize hybrids were subjected to three cycles of drought, and we measured the activities of photosystem II (PSII) and photosystem I (PSI).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers isolated and characterized a napin protein (EsNap) from rocket salad seeds (Eruca sativa) through techniques like ammonium sulfate precipitation and size-exclusion chromatography, producing a clear 16 kDa protein band on SDS-PAGE.
  • EsNap showed structural features such as a dominant α-helical configuration and monomeric status, with advanced modeling techniques confirming its dimensions and molecular weight.
  • The protein displayed strong antifungal activity against the fungus Fusarium graminearum, cytotoxic effects on hepatic cells (IC value of 20.49 µM), and entomotoxicity against the stored grain pest T. castaneum, indicating its potential for future applications in antifungal, anti-cancer, and insect
View Article and Find Full Text PDF

Background: Proline can promote growth of plants by increasing photosynthetic activity under both non-stress and abiotic stress conditions. However, its role in non-stressed conditions is least studied. An experiment was conducted to assess as to whether increase in growth of wheat due to seed priming with proline under non-stress condition was associated with proline-induced changes in photosystem II (PSII) activity.

View Article and Find Full Text PDF

The contribution of one major or a combination of several physiological processes in salt tolerance was assessed in three local varieties (Blacklong, Advanta-1103, and Dilpasand) of ridge gourd [Luffa acutangula (L.) Roxb.] at varying salt levels (0, 75, and 150 mM NaCl).

View Article and Find Full Text PDF

Melatonin is an early player in chromium stress response in canola plants; it promotes ROS scavenging and chlorophyll stability, modulates PSII stability and regulates feedback inhibition of photosynthesis conferring chromium tolerance. The development of heavy metals, especially chromium (Cr)-tolerant cultivars is mainly constrained due to poor knowledge of the mechanism behind Cr stress tolerance. In the present study, two Brassica napus contrasting cultivars Ac-Excel and DGL were studied for Cr stress tolerance by using chlorophyll a fluorescence technique and biochemical attributes with and without melatonin (MT) treatments.

View Article and Find Full Text PDF

Salt tolerant wheat cultivars may be used as genetic resource for wheat breeding to ensure yield stability in future. The study was aimed to select salt tolerant cultivar(s) to identify novel source of salt tolerance in local wheat germplasm. Initially, 40 local wheat cultivars were screened at 150 mM NaCl stress at seedling stage.

View Article and Find Full Text PDF

Developing drought-tolerant cultivars is mainly restricted due to poor knowledge of the mechanism behind drought tolerance. In the present work, available germplasm of Vigna radiata (mung bean) was screened for drought tolerance using multiple agronomic and physiological parameters and used to selected one drought-tolerant (NM-13-1) and one drought-sensitive (NM-54) cultivar for further studies. Plant water status and PSII activity were found to be potential physiological discriminating traits.

View Article and Find Full Text PDF

In the present study, the mung bean cv. NM-13-1 was selected as drought-tolerant and NM-54 as drought-sensitive. The effects of progressive drought (16 days) on the photosystem II (PSII) activity was assessed using OJIP and JIP-test in the selected two mung bean cultivars differing in drought tolerance.

View Article and Find Full Text PDF

Salinity is one of the major abiotic stresses prevailing throughout the world that severely limits crop establishment and production. Every crop has an intra-specific genetic variation that enables it to cope with variable environmental conditions. Hence, this genetic variability is a good tool to exploit germplasms in salt-affected areas.

View Article and Find Full Text PDF

The short time response to salt stress was studied in . Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured.

View Article and Find Full Text PDF

In the past decade, various strategies to improve photosynthesis and crop yield, such as leaf morphology, light interception and use efficiency, biochemistry of light reactions, stomatal conductance, carboxylation efficiency, and source to sink regulation, have been discussed at length. Leaf morphology and physiology are tightly coupled to light capturing efficiency, gas exchange capacity, and temperature regulation. However, apart from the photoprotective mechanism of photosystem-II (PSII), i.

View Article and Find Full Text PDF

Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis).

View Article and Find Full Text PDF

Glutathione-S-transferases, GSTM1 and GSTT1 play a significant role in detoxification and bioactivation of a broad range of xenobiotic compounds known to be mutagenic and/or carcinogenic. Deletion polymorphisms of these glutathione transferases (GSTM1 and GSTT1) predispose individuals to environmental carcinogenic compounds. Although a number of studies have shown the relationship between GSTM1 and/or GSTT1 deletion polymorphism and different cancers, these findings cannot be extrapolated to other populations due to intra- and inter-ethnic variability.

View Article and Find Full Text PDF