Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Developing drought-tolerant cultivars is mainly restricted due to poor knowledge of the mechanism behind drought tolerance. In the present work, available germplasm of Vigna radiata (mung bean) was screened for drought tolerance using multiple agronomic and physiological parameters and used to selected one drought-tolerant (NM-13-1) and one drought-sensitive (NM-54) cultivar for further studies. Plant water status and PSII activity were found to be potential physiological discriminating traits. Changes in PSII and PSI activity, accumulation of proline, oxidative damage, and antioxidants were further assessed in selected drought-sensitive and drought-tolerant cultivars. Drought stress reduced PSII efficiency and electron transport in both mung bean cultivars. Drought increased NPQ and Y(NPQ), a greater increase in NPQ and Y(NPQ) was found in the drought-tolerant cv NM-13-1, indicating that the drought-tolerant cultivar managed over-excitation of PSII by safe heat dissipation via photo-protective component of NPQ. A decrease in PSI efficiency with an increase in donor end limitation of PSI in both mung bean cultivars further confirmed that the electron transport through PSII became down-regulated. However, the drought-sensitive cv. NM-54 had poor ability to manage over-excitation of PSII through buildup of Y(NPQ) thereby causing greater oxidative stress. Mung bean cultivars counteracted oxidative stress by accumulation of proline and increasing POD activities. Drought-tolerant cv. NM-13-1 had higher proline accumulation and antioxidant potential than in the drought-sensitive cultivar. Overall, drought tolerance in the mung bean cultivars can be related to plant water status, PSII activity, Y(NPQ), and POD activity, which can be effectively used for selecting mung bean cultivars for drought tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13337 | DOI Listing |