Publications by authors named "Dorsaf Hmidi"

The ability to accumulate nutrients is a hallmark for living creatures and plants evolved highly effective nutrient transport systems, especially for the uptake of potassium (K). However, plants also developed mechanisms that enable the rapid extrusion of K in combination with anions. The combined release of K and anions is probably an ancient extrusion system, as it is found in the Characeae that are closely related to land plants.

View Article and Find Full Text PDF

Soil salinity constitutes a major environmental constraint to crop production worldwide. Leaf K /Na homoeostasis, which involves regulation of transpiration, and thus of the xylem sap flow, and control of the ionic composition of the ascending sap, is a key determinant of plant salt tolerance. Here, we show, using a reverse genetics approach, that the outwardly rectifying K -selective channel OsK5.

View Article and Find Full Text PDF

Control of K+ and Na+ transport plays a central role in plant adaptation to salinity. In the halophyte Hordeum maritimum, we have characterized a transporter gene, named HmHKT2;1, whose homolog HvHKT2;1 in cultivated barley, Hordeum vulgare, was known to give rise to increased salt tolerance when overexpressed. The encoded protein is strictly identical in two H.

View Article and Find Full Text PDF

The short time response to salt stress was studied in . Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured.

View Article and Find Full Text PDF

Salt stress responses implicate a complex mechanism and differ from plant species to another. In this study, we analyzed the physiological, biochemical and molecular responses to salt stress of the diploid wheat () and compared to the tetraploid wheat (). Our results showed that the diploid wheat cultivar (cv.

View Article and Find Full Text PDF