Publications by authors named "Filip K Swirski"

Ventricular tachycardia disrupts the heart's coordinated pump function, leading to sudden cardiac death. Neutrophils, which are recruited in high numbers to the ischemic myocardium, promote these arrhythmias. Comparing neutrophils with macrophages, we found that resistin-like molecule γ ( or RELMγ) was the most differentially expressed gene in mouse infarcts.

View Article and Find Full Text PDF

The immune system's central function is to maintain homeostasis by guarding the organism against dangerous external and internal stressors. Immunity's operational toolbox contains diverse processes, such as phagocytosis, antigen recognition, cell killing, and secretion of cytokines and antibodies. Although immune cells interact with each other, they also communicate with cells typically associated with other organ systems, including the nervous, circulatory, metabolic, musculoskeletal, endocrine, and hematopoietic.

View Article and Find Full Text PDF

Connections between the nervous and immune systems are increasingly recognized as central to brain-body physiology. In this Review, we examine how these systems collaborate to detect and respond to both internal and external stimuli - such as psychological stress, circadian cues, infection, and tissue injury. Rather than operating in isolation, the nervous and immune systems form an integrated network that is more than the sum of its parts.

View Article and Find Full Text PDF

The interaction between inflammation and metabolism (immunometabolism) is a crucial factor in the pathophysiology of heart failure, whether the cardiac failure originates from ischaemic injury or systemic metabolic disorders, and whether it is associated with reduced or preserved ejection fraction. Ischaemia, metabolic stress and comorbidity-driven systemic inflammation attract innate and adaptive immune cells to the myocardium and induce their polarization towards pro-inflammatory or anti-inflammatory phenotypes through cell-intrinsic metabolic shifts involving oxidative phosphorylation and anaerobic glycolysis. These infiltrating immune cells modulate cardiac and systemic metabolism.

View Article and Find Full Text PDF

Heightened activity in the orbitofrontal cortex (OFC), a brain region that contributes to motivation, emotion, and reward-related decision-making, is a key clinical feature of major depressive disorder (MDD). However, the cellular and molecular substrates underlying this dysfunction remain unclear. Here, we performed cell-type-specific profiling of human OFC and unexpectedly mapped MDD-linked epigenomic features (including genetic risk variants) to non-neuronal cells, revealing significant glial dysregulation in this region.

View Article and Find Full Text PDF

Although the neurocardiac axis is central to cardiovascular homeostasis, its dysregulation drives heart failure and cardiometabolic diseases. This review examines the bidirectional interplay between the autonomic nervous system and the heart, highlighting the role of this interplay in disease progression and its therapeutic potential. The autonomic nervous system modulates cardiac function and vascular tone through its sympathetic and parasympathetic branches.

View Article and Find Full Text PDF

Modified messenger RNA (modRNA) is a promising gene delivery method used to upregulate genes in cardiac tissue, with applications in both clinical and preclinical settings to prevent cardiac remodeling after ischemic injury. The 5' untranslated region (5'UTR) plays a crucial role in regulating the translation efficiency of mRNA into functional proteins. Due to the high production cost and short half-life of modRNA, it is essential to identify novel 5'UTR designs that enhance modRNA translation in the heart.

View Article and Find Full Text PDF

Monocytes and neutrophils from the myeloid lineage contribute to multiple sclerosis (MS), but the dynamics of myelopoiesis during MS are unclear. Here we uncover a disease stage-specific relationship between lifestyle, myelopoiesis and neuroinflammation. In mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), myelopoiesis in the femur, vertebrae and spleen is elevated prior to disease onset and during remission, preceding the peaks of clinical disability and neuroinflammation.

View Article and Find Full Text PDF
Article Synopsis
  • * Research from animal studies to large human populations reveals that insufficient or inconsistent sleep harms cardiovascular wellness by disturbing vital body systems.
  • * Ongoing studies are uncovering the connections between sleep and factors like the autonomic nervous, metabolic, and immune systems that contribute to cardiovascular diseases such as atherosclerosis.
View Article and Find Full Text PDF
Article Synopsis
  • Sleep plays a crucial role in heart health, especially after a heart attack (myocardial infarction), by influencing inflammatory responses and healing processes.
  • After a heart attack, certain immune cells (monocytes) are recruited to the brain to promote sleep, which helps reduce harmful stress on the heart and supports recovery.
  • Disruption of sleep can worsen heart function and increase the risk of further cardiovascular issues, as poor sleep can reprogram immune cells in a way that enhances inflammation and hinders the healing process.
View Article and Find Full Text PDF
Article Synopsis
  • Aging increases the risk of cancer by affecting how the immune system works, especially in lung tumors.
  • Older immune cells lead to the buildup of certain cells that produce IL-1⍺, which makes cancer grow faster.
  • By blocking IL-1R1 signaling early on, scientists found they could slow down cancer growth in the lungs, colon, and pancreas, and learned how aging is linked to worse cancer outcomes in humans.
View Article and Find Full Text PDF

In naive individuals, sensory neurons directly detect and respond to allergens, leading to both the sensation of itch and the activation of local innate immune cells, which initiate the allergic immune response. In the setting of chronic allergic inflammation, immune factors prime sensory neurons, causing pathologic itch. Although these bidirectional neuroimmune circuits drive responses to allergens, whether immune cells regulate the set-point for neuronal activation by allergens in the naive state is unknown.

View Article and Find Full Text PDF

Background: Viral infections can cause acute respiratory distress syndrome (ARDS), systemic inflammation, and secondary cardiovascular complications. Lung macrophage subsets change during ARDS, but the role of heart macrophages in cardiac injury during viral ARDS remains unknown. Here we investigate how immune signals typical for viral ARDS affect cardiac macrophage subsets, cardiovascular health, and systemic inflammation.

View Article and Find Full Text PDF

After myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Since the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here, we show in humans and female mice that hematopoietic progenitor cells increase fatty acid metabolism after MI.

View Article and Find Full Text PDF
Article Synopsis
  • Psychosocial stress significantly impacts bodily functions, particularly affecting the immune system and brain, linking it to stress-related issues like major depressive disorder (MDD).
  • Researchers found that the protein matrix metalloproteinase 8 (MMP8) is elevated in both humans with MDD and stress-susceptible mice, influencing brain structure and behavior.
  • The study suggests that targeting immune-derived MMP8 could offer new treatment options for neuropsychiatric disorders triggered by stress.
View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the CBP/p300 histone acetyltransferase (HAT) domain are linked to leukemia and affect leukocyte compartment sizes.
  • The small-molecule A485 was found to quickly mobilize leukocytes from bone marrow to blood, showing similar effectiveness as granulocyte colony-stimulating factor (G-CSF) but working through a different mechanism.
  • A485 activation of the HPA axis influences leukocyte distribution via specific hormones, suggesting a potential new approach for rapidly increasing blood leukocyte levels to help treat various human diseases.
View Article and Find Full Text PDF

Exercise, stress, sleep and diet are four distinct but intertwined lifestyle factors that influence the cardiovascular system. Abundant epidemiological, clinical and preclinical studies have underscored the importance of managing stress, having good sleep hygiene and responsible eating habits and exercising regularly. We are born with a genetic blueprint that can protect us against or predispose us to a particular disease.

View Article and Find Full Text PDF

Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression.

View Article and Find Full Text PDF

In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed multiparametric imaging approaches to investigate the immune response following myocardial infarction.

View Article and Find Full Text PDF

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development.

View Article and Find Full Text PDF

Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and macrophage expansion in atrial fibrillation.

View Article and Find Full Text PDF

Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44CD4 T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ).

View Article and Find Full Text PDF

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear.

View Article and Find Full Text PDF

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD), the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS).

View Article and Find Full Text PDF