Connection and communication between the nervous and immune systems.

Nat Rev Immunol

Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Published: July 2025


Article Synopsis

  • The nervous and immune systems work together to respond to various stimuli such as stress, infection, and injury, highlighting their interconnectedness in brain-body physiology.
  • They communicate through a shared network, influencing immune cell characteristics and responses throughout the body.
  • The review explores these interactions within spatial and temporal frameworks, emphasizing how the nervous system affects immune cell development and function while suggesting future research avenues.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Connections between the nervous and immune systems are increasingly recognized as central to brain-body physiology. In this Review, we examine how these systems collaborate to detect and respond to both internal and external stimuli - such as psychological stress, circadian cues, infection, and tissue injury. Rather than operating in isolation, the nervous and immune systems form an integrated network that is more than the sum of its parts. They share a common architecture and vocabulary, enabling bidirectional connection and communication that modulate immune cell characteristics throughout the body. We review immune-nervous interactions within two complementary frameworks: first, a spatial framework that distinguishes communication in the brain, communication within peripheral organs, and communication across distance; and second, a temporal framework that maps nervous system influence across the operational lifespan of the immune system - specifically focusing on how the nervous system impacts immune cell development, distribution, and execution of functions. Finally, we highlight key tools, clinical applications, and questions for future research on how both systems coordinate to respond to somatic and environmental stressors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41577-025-01199-6DOI Listing

Publication Analysis

Top Keywords

nervous immune
12
immune systems
12
connection communication
8
immune cell
8
nervous system
8
immune
6
nervous
5
systems
5
communication nervous
4
systems connections
4

Similar Publications

Unraveling epigenetic drivers of immune evasion in gliomas: mechanisms and therapeutic implications.

Front Immunol

September 2025

Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.

View Article and Find Full Text PDF

Skull-meninges-brain connectivity and extra-axial brain tumours.

Brain Commun

August 2025

Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8FJ, UK.

The cortex of the brain is covered by three meningeal layers: the dura, the arachnoid, and the pia mater. Substantial discoveries have been made demonstrating the structural and functional relationships between these layers, and with other neighbouring structures such as the skull. Importantly, improved understanding of the meningeal lymphatic network places the meninges at the nexus of a cross talk between the brain, peripheral immune system, and the skull bone marrow.

View Article and Find Full Text PDF

Microglia, the central nervous system's resident macrophages, are critical for immune defense, protecting neurons during infection. Their role in postnatal brain development, particularly after injury, remains unclear. Nucling, a protein up-regulated during cardiac muscle differentiation, regulates NF-κB, influencing apoptosis and cell proliferation.

View Article and Find Full Text PDF

Mechanisms and treatment of cancer therapy-induced peripheral and central neurotoxicity.

Nat Rev Cancer

September 2025

Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.

Neurotoxicity is a common and potentially severe adverse effect from conventional and novel cancer therapy. The mechanisms that underlie clinical symptoms of central and peripheral nervous system injury remain incompletely understood. For conventional cytotoxic chemotherapy or radiotherapy, direct toxicities to brain structures and neurovascular damage may result in myelin degradation and impaired neurogenesis, which eventually translates into delayed neurodegeneration accompanied by cognitive symptoms.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF