Publications by authors named "Feng-Ming Lin"

We evaluated the analytical and clinical performance of a novel circulating tumor cell (CTC)-based blood test for determination of programmed death ligand 1 (PD-L1) protein expression status in real time in treatment-naïve non-small cell lung cancer (NSCLC) patients. CTCs were detected in 86% of patients with NSCLC (I-IV) at the time of diagnosis, with a 67% PD-L1 positivity rate (≥ 1 PDL + CTC). Among 33 NSCLC patients with PD-L1 results available via both tissue immunohistochemistry (IHC) and CTC assays, 78.

View Article and Find Full Text PDF

SUMO post-translational modification of proteins or SUMOylation ensures normal cell function. Disruption of SUMO dynamics prompts various pathophysiological conditions, including cancer. The burden of deSUMOylating the large SUMO-proteome rests on 6 full-length mammalian SUMO-proteases or SENP.

View Article and Find Full Text PDF

Epigenetic reprogramming allows cancer cells to bypass normal checkpoints and potentiate aberrant proliferation. Several chromatin regulators are subject to reversible SUMO-modification but little is known about how SUMOylation of chromatin-remodelers modulates the cancer epigenome. Recently, we demonstrated that SUMO-protease SENP7L is upregulated in aggressive BCa and maintains hypoSUMOylated heterochromatin protein 1-α (HP1α).

View Article and Find Full Text PDF

Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products.

View Article and Find Full Text PDF

An immobilized pH gradient was directly constructed on the inner wall of a microfluidic chip channel by photoimmobilizing focused carrier ampholytes onto the wall. A mixture of carbonic anhydrase, myoglobin, and trypsin inhibitor was successfully isoelectric-focused and separated with good linearity between the pI values of proteins and the location of the focused bands. Furthermore, coating methods for the resistance of protein nonselective adsorption and simultaneously for pH gradient photocoupling were screened.

View Article and Find Full Text PDF

Recombination and synapsis of homologous chromosomes are hallmarks of meiosis in many organisms. Meiotic recombination is initiated by Spo11-induced DNA double-strand breaks (DSBs), whereas chromosome synapsis is mediated by a tripartite structure named the synaptonemal complex (SC). Previously, we proposed that budding yeast SC is assembled via noncovalent interactions between the axial SC protein Red1, SUMO chains or conjugates, and the central SC protein Zip1.

View Article and Find Full Text PDF

Two Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) variants are naturally expressed in breast epithelia. Breast cancer (BCa) onset down-regulates the short SENP7 splice variant (SENP7S) and enhances the long transcript (SENP7L). Here, we show that SENP7L induction promotes gene expression profiles that favor aberrant proliferation and initiate epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Small ubiquitin-like modifier (SUMO) modification has emerged as an important regulatory mechanism during embryonic development. However, it is not known whether SUMOylation plays a role in the development of the immune system. Here, we show that SUMO-specific protease 1 (SENP1) is essential for the development of early T and B cells.

View Article and Find Full Text PDF

When a transcription factor is modified by small ubiquitin-like modifier (SUMO), this usually represses its transcriptional activity. In this issue of Developmental Cell, Lee et al. (2011) use a knockin mouse model to show that SUMO-less SF-1 binds and activates inappropriate targets, causing changes in cell fates and endocrine abnormalities.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a meiosis-specific tripartite structure that forms between two homologous chromosomes; it consists of a central region and two parallel lateral elements. Lateral elements also are called axial elements prior to synapsis. In Saccharomyces cerevisiae, Red1, Hop1, and Mek1 are structural components of axial/lateral elements.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a tripartite protein structure consisting of two parallel axial elements (AEs) and a central region. During meiosis, the SC connects paired homologous chromosomes, promoting interhomologue (IH) recombination. Here, we report that, like the CE component Zip1, Saccharomyces cerevisiae axial-element structural protein, Red1, can bind small ubiquitin-like modifier (SUMO) polymeric chains.

View Article and Find Full Text PDF

Furfural, one of the main inhibitory compounds in lignocellulosic hydrolytes, inhibits the growth and ethanol production rate of yeast. To get a global view of the dynamic expression pattern of proteins in Saccharomyces cerevisiae during the fermentation with the introduction of 8 g/L furfural, the protein samples were taken before the addition of furfural, during the initial phase of furfural conversion and immediately after the conversion of furfural for comparative proteomic analysis with iTRAQ on a LC-ESI-MS/MS instrument. A comparison of the temporal expression pattern of 107 proteins related to protein synthesis between the reference cultures and the furfural-treated cultures showed that a temporal downregulation of these proteins was retarded after the addition of furfural.

View Article and Find Full Text PDF

The molecular mechanism involved in tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to inhibitors (such as furfural, acetic acid, and phenol) represented in lignocellulosic hydrolysate is still unclear. Here, (18)O-labeling-aided shotgun comparative proteome analysis was applied to study the global protein expression profiles of S. cerevisiae under conditions of treatment of furfural compared with furfural-free fermentation profiles.

View Article and Find Full Text PDF

In budding yeast Saccharomyces cerevisiae, centromeres and telomeres are tethered to the nuclear envelope during premeiotic interphase. Immediately after cells enter meiotic prophase, chromosomes undergo global reorganization, including bouquet formation (telomere clustering), non-homologous centromere coupling, homologous pairing, and assembly/disassembly of synaptonemal complexes. These chromosome dynamics have been implicated in promoting pairing, synapsis, crossover DNA recombination and segregation between homologous chromosomes.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a proteinaceous complex that apparently mediates synapsis between homologous chromosomes during meiotic prophase. In Saccharomyces cerevisiae, the Zip1 protein is the integral component of the SC. In the absence of a DNA double-strand break or the SC initiation protein Zip3, Zip1 proteins aggregate to form a polycomplex (PC).

View Article and Find Full Text PDF

Hepatitis delta virus (HDV) genotype II is the predominant genotype in Taiwan and is associated with less progressive disease than genotype I. Although the Taiwan-3 (T3) clone was the first genotype II HDV isolated in Taiwan, its replication in cultured cells has not previously been established. Here, we demonstrate that cloned T3 HDV is capable of replicating in cultured cells.

View Article and Find Full Text PDF