98%
921
2 minutes
20
The synaptonemal complex (SC) is a meiosis-specific tripartite structure that forms between two homologous chromosomes; it consists of a central region and two parallel lateral elements. Lateral elements also are called axial elements prior to synapsis. In Saccharomyces cerevisiae, Red1, Hop1, and Mek1 are structural components of axial/lateral elements. The red1/mek1/hop1 mutants all exhibit reduced levels of interhomolog recombination and produce no viable spores. Red1 is a phosphoprotein. Several earlier reports proposed that phosphorylated Red1 plays important roles in meiosis, including in signaling meiotic DNA damage or in preventing exit from the pachytene chromosomes. We report here that the phosphorylation of Red1 is carried out in CDC28-dependent and CDC28-independent manners. In contrast to previous results, we found Red1 phosphorylation to be independent of meiotic DNA recombination, the Mec1/Tel1 DNA damage checkpoint kinases, and the Mek1 kinase. To functionally validate the phosphorylation of Red1, we mapped the phosphorylation sites on this protein. A red1(14A) mutant showing no detectable Red1 phosphorylation did not exhibit decreased sporulation efficiency, defects in viable spore production, or defects in meiotic DNA damage checkpoints. Thus, our results suggest that the phosphorylation of Red1 is not essential for its functions in meiosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067829 | PMC |
http://dx.doi.org/10.1128/MCB.00895-10 | DOI Listing |
Vet World
July 2025
Bio-Innovation Research Center, Tokushima University, 779-3233 Tokushima, Japan.
Background And Aim: Porcine follicular fluid (pFF) is frequently used to mimic the follicular microenvironment during maturation (IVM) of oocytes. However, the influence of oxidative stress levels within pFF on oocyte quality and embryo development remains unclear. This study aimed to investigate how varying oxidative stress index (OSI) of pFF affect porcine oocyte meiotic progression, fertilization, and embryonic development during IVM.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.
BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
DNA Repair and Recombination Laboratory, St Vincent's Institute of Medical Research, Fitzroy VIC 3065, Australia.
Meiotic crossovers promote correct chromosome segregation and the shuffling of genetic diversity. However, the measurement of crossovers remains challenging, impeding our ability to decipher the molecular mechanisms that are necessary for their formation and regulation. Here we demonstrate a novel repurposing of the single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-seq) as a simple and high-throughput method to identify and characterize meiotic crossovers from haploid testis nuclei.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America.
The synaptonemal complex (SC) is a meiosis-specific structure that aligns homologous chromosomes and promotes the repair of meiotic DNA double-strand breaks (DSBs). To investigate how defects in SC formation affect gametogenesis in zebrafish, we analyzed mutations in two genes encoding core SC components: syce2 and sycp1. In syce2 mutants, chromosomes exhibit partial synapsis, primarily at sub-telomeric regions, whereas sycp1 mutant chromosomes display early prophase co-alignment but fail to synapse.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Institute of Carbon Neutrality, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, China.
DNA methylation is a crucial epigenetic modification that is stably inherited across both mitotic and meiotic cell divisions in plants. It is regulated by multiple epigenetic pathways, and alterations in methylation can lead to phenotypic variation independent of changes in the DNA sequence. In this study, changes in DNA methylation triggered by the chromatin remodeler DDM1 (DECREASE IN DNA METHYLATION 1) were found to influence leaf phenotypes in Arabidopsis thaliana.
View Article and Find Full Text PDF