As the principal receptor that mediates both synaptic and tonic inhibition of neurons in the brain, the A-type gamma-aminobutyric acid receptor (GABAR) is functionally important for maintaining the balance between neuronal excitation and inhibition. Here, we report the identification of netrin-1 as an endogenous allosteric modulator of GABARs. Following increased neuronal excitability, netrin-1 is secreted and binds to the extracellular domains of GABAR subunits, thereby inducing homeostatic upscaling of GABAR-mediated synaptic efficacy and currents.
View Article and Find Full Text PDFWe report the identification of a de novo GABRA1 (R214C) variant in a child with epileptic encephalopathy (EE), describe its functional characterization and pathophysiology, and evaluate its potential therapeutic options. The GABRA1 (R214C) variant was identified using whole exome sequencing, and the pathogenic effect of this mutation was investigated by comparing wild-type (WT) α1 and R214C α1 GABA receptor-expressing HEK cells. GABA-evoked currents in these cells were recorded using whole-cell, outside-out macro-patch and cell-attached single-channel patch-clamp recordings.
View Article and Find Full Text PDFApolipoprotein E4 (ApoE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), where inheritance of this isoform predisposes development of AD in a gene dose-dependent manner. Although the mode of action of ApoE4 on AD onset and progression remains unknown, we have previously shown that ApoE4, and not ApoE3 expression, resulted in insulin signaling deficits in the presence of amyloid beta (Aβ). However, these reports were not conducted with clinical samples that more accurately reflect human disease.
View Article and Find Full Text PDFThe apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). The AD brain was shown to be insulin resistant at end stage, but the interplay between insulin signaling, ApoE4 and Aβ across time, and their involvement in memory decline is unclear. To investigate insulin response in the ageing mouse hippocampus, we crossed the human ApoE-targeted replacement mice with the mutant human amyloid precursor protein (APP) mice (ApoExAPP).
View Article and Find Full Text PDFIt is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice.
View Article and Find Full Text PDFThe diabetic drug rosiglitazone was reported to improve glucose tolerance in insulin-resistant ApoE3 but not ApoE4 knock-in mice. We therefore examined whether apolipoprotein E (ApoE) has genotype-specific effects on liver insulin function. At 12 weeks, no difference in liver insulin signaling was detected between fasting ApoE3 and ApoE4 mice.
View Article and Find Full Text PDFHuman ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice.
View Article and Find Full Text PDFThe deregulation of cyclin-dependent kinase 5 (Cdk5) by p25 has been shown to contribute to the pathogenesis in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD). In particular, p25/Cdk5 has been shown to produce hyperphosphorylated tau, neurofibrillary tangles as well as aberrant amyloid precursor protein processing found in AD. Neuroinflammation has been observed alongside the pathogenic process in these neurodegenerative diseases, however the precise mechanism behind the induction of neuroinflammation and the significance in the AD pathogenesis has not been fully elucidated.
View Article and Find Full Text PDF