Background: Mutations in CHCHD2 have been linked to Parkinson's disease, however, their exact pathophysiologic roles are unclear. The p32 protein has been suggested to interact with CHCHD2, however, the physiological functions of such interaction in the context of PD have not been clarified.
Methods: Interaction between CHCHD2 and p32 was confirmed by co-immunoprecipitation experiments.
Guanabenz (GBZ), an α-adrenergic agonist, demonstrated off-target effects that restored protein homeostasis and ameliorated pathobiology in experimental models of neurodegenerative disease. However, GBZ did not directly activate the integrated stress response (ISR), and its proposed mode of action remains controversial. Utilizing an iterative screen of over 10,000 GBZ analogues, we analyzed 432 representative compounds for cytotoxicity in Wild-type, PPP1R15A-/-, and PPP1R15B-/- mouse embryonic fibroblasts.
View Article and Find Full Text PDFOxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is , the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders.
View Article and Find Full Text PDFSeveral studies have indicated that neuroinflammation is indeed associated with neurodegenerative disease pathology. However, failures of recent clinical trials of anti-inflammatory agents in neurodegenerative disorders have emphasized the need to better understand the complexity of the neuroinflammatory process in order to unravel its link with neurodegeneration. Deregulation of Cyclin-dependent kinase 5 (Cdk5) activity by production of its hyperactivator p25 is involved in the formation of tau and amyloid pathology reminiscent of Alzheimer's disease (AD).
View Article and Find Full Text PDFPhosphorylation of the eukaryotic translation initiation factor, eIF2α, by stress-activated protein kinases and dephosphorylation by the growth arrest and DNA damage-inducible protein (GADD34)-containing phosphatase is a central node in the integrated stress response. Mass spectrometry demonstrated GADD34 acetylation at multiple lysines. Substituting K and K with alanines or glutamines did not impair GADD34's ability to recruit protein phosphatase 1α (PP1α) or eIF2α, suggesting that GADD34 acetylation did not modulate eIF2α phosphatase activity.
View Article and Find Full Text PDFBiochem Soc Trans
February 2017
Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death. While this review focuses attention on one or more eIF2α phosphatases, the wide range of UPR proteins that are currently being explored as potential drug targets bodes well for the successful future development of therapies to preserve neuronal function and treat neurodegenerative disease.
View Article and Find Full Text PDFPhosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation in stressed cells. While phosphorylated eIF2α (P-eIF2α) attenuates global protein synthesis, mRNAs encoding stress proteins are more efficiently translated. Two eIF2α phosphatases, containing GADD34 and CReP, catalyze P-eIF2α dephosphorylation.
View Article and Find Full Text PDFThe aberrant hyperactivation of Cyclin-dependent kinase 5 (Cdk5), by the production of its truncated activator p25, results in the formation of hyperphosphorylated tau, neuroinflammation, amyloid deposition, and neuronal death in vitro and in vivo. Mechanistically, this occurs as a result of a neurotoxic insult that invokes the intracellular elevation of calcium to activate calpain, which cleaves the Cdk5 activator p35 into p25. It has been shown previously that the p25 transgenic mouse as a model to investigate the mechanistic implications of p25 production in the brain, which recapitulates deregulated Cdk5-mediated neuropathological changes, such as hyperphosphorylated tau and neuronal death.
View Article and Find Full Text PDFThe deregulation of cyclin-dependent kinase 5 (Cdk5) by p25 has been shown to contribute to the pathogenesis in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD). In particular, p25/Cdk5 has been shown to produce hyperphosphorylated tau, neurofibrillary tangles as well as aberrant amyloid precursor protein processing found in AD. Neuroinflammation has been observed alongside the pathogenic process in these neurodegenerative diseases, however the precise mechanism behind the induction of neuroinflammation and the significance in the AD pathogenesis has not been fully elucidated.
View Article and Find Full Text PDFCyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation plays an important role in proper synaptic function and transmission. Loss of Cdk5 activity results in abnormal development of the nervous system accompanied by massive disruptions in cortical migration and lamination, therefore impacting synaptic activity. The Cdk5 activator p35 associates with delta-catenin, the synaptic adherens junction protein that serves as part of the anchorage complex of AMPA receptor at the postsynaptic membrane.
View Article and Find Full Text PDF